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Abstract 
This study investigated the development of player skill and cognitive understanding of a game over 

repeated plays to (a) bridge separate research traditions on skill acquisition and games learning and (b) 

provide deeper insight into the process of developing mental models of games. 325 participants 

responded to an online questionnaire with questions concerning their experience with the game, Hive, as 

well as both open- and closed-ended items designed to compare their understanding of the game to an 

expert’s understanding. Open-ended items were content analyzed and modeled as a latent variable. As 

predicted, both player skill and mental model matching were positively associated with number of plays. 

Additionally, while player skill had a curvilinear relationship with number of plays that indicated 

diminishing returns on additional plays, that between cognitive understanding and plays appeared to be 

linear. The implications of these findings for the cognitive underpinnings of player skill—and for mental 

model matching theory in particular—are discussed. Supplemental online material is provided here: 

https://osf.io/3yeg2/ 
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Introduction 

For well over 50 years, there has been interest in 

using games and simulations as vehicles for 

learning (Faria, Hutchinson, Wellington, & 

Gold, 2009). The potential of games—both 

digital and analog—for instruction has been 

successfully leveraged for a diverse range of 

educational content, from teaching fractions to 

fourth graders (Jiménez, Arena, & Acholonu, 

2011) to teaching English, math, and science to 

undergraduates (Crocco, Offenholley, & 

Hernandez, 2016). Recent meta-analyses and 

systematic reviews further suggest that games 

are effective learning tools for many topics, in 

many contexts, and for many people (Boyle et  

 

al., 2016; Clark, Tanner-Smith, & Killingsworth, 

2016). Better understandings of the cognitive 

mechanisms underlying learning from games 

would contribute to improved learning outcomes 

by facilitating better design of learning games, 

more effective integration into educational 

contexts, and more targeted interventions that 

best take advantage of games’ strengths. 

Two lines of research concerned with games 

and learning have developed, one concerned 

with players’ development of skill and 

performance (e.g., Gobet & Charness, 2006), the 

other related to cognitive learning of academic 

content through gameplay (e.g., National 
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Research Council, 2011). Some have argued that 

games de facto entail learning (Bryant & 

Fondren, 2009; Gee, 2003). Recent theorizing 

has proposed that learning through gameplay is a 

process of (a) learners developing mental models 

of games and (b) transferring those 

understandings to academic contexts (Boyan & 

Sherry, 2011; Martinez-Garza & Clark, 2017). 

Because mental models are also thought to 

support players’ effective decision-making in 

games (McGloin, Wasserman, & Boyan, 2018), 

there is the potential to integrate perspectives on 

learning games as skill acquisition and mental 

model development. This study’s goals are two-

fold: first, to illustrate a methodology for 

measuring mental models of games, and second, 

to initially apply this methodology to investigate 

relationships among individuals’ experience 

with, performance in, and mental models of a 

recreational analog game. 

The diversity of definitions of games attests 

to the difficulty of defining them, although 

Stenros (2017) identified 10 dimensions of 

games along which definitions vary, facilitating 

a definition that includes a broad range of 

activities, analog and digital, that challenge 

players to accomplish goals while constrained by 

rules. While a full discussion of game definitions 

is outside the scope of this paper, the role of 

game mechanics in particular is of central 

importance to the conceptualization of games in 

this study. Game mechanics exist at the 

intersection of active players, rules, and goals. In 

combination, rules delimit the full range of 

actions that are possible for players to perform 

within a game (Salen & Zimmerman, 2004). 

Game mechanics emerge from the interactions 

of a game’s full constellation of rules, 

determining the consequences of players’ in-

game choices. For example, rules in a platformer 

like Super Mario Bros. govern the speed of 

jumping and descent, as well as the effects of 

colliding with various objects in the game. From 

the interaction of these more elementary rules, as 

well as the game environment, game mechanics 

emerge, such as jumping on a winged Koopa 

Troopa to clear a large vertical or horizontal 

space that would otherwise be impossible. In 

sum, game mechanics (a) afford and constrain 

players’ abilities to pursue their goals and (b) 

structure causal relationships among elements of 

a game, including the influence of player actions 

and influences of game elements on each other. 

 
Game Learning as Skill Acquisition 

By drawing on the aforementioned 

conceptualization of games as comprising sets of 

interacting game mechanics that players 

manipulate in their pursuit of goals, learning in 

games can be seen as a process of developing 

abilities to more successfully manipulate game 

mechanics in the service of overcoming 

progressively more difficult challenges (Gray & 

Lindstedt, 2017). From this perspective, learning 

in games is a process of skill acquisition. As 

individuals repeatedly encounter the same or 

similar challenges, their skills improve, although 

their rate of improvement typically declines with 

practice (Ritter & Schooler, 2001). These skills 

range from relatively discrete (e.g., correctly 

executing a particular combination of moves in a 

fighting game) to relatively holistic (e.g., 

incorporating multiple combinations of moves 

into an effective strategy for defeating 

opponents). As the ability to overcome 

challenges, skill can be observed as individuals 

overcome challenges during gameplay, e.g., by 

defeating other players or achieving higher 

scores (Isaksen & Nealen, 2016). Game 

performance, therefore, can serve as an 

observable index of skill and learning. This 

approach has been used in much research on 

skill acquisition and expertise in games (e.g., 

Charness, Tuffiash, Krampe, Reingold, & 

Vasyukova, 2005; Stafford & Dewar, 2014). 

As players repeated play a game, their 

performance gradually and incrementally 

improves over time (Campitelli & Gobet, 2008; 

Stafford & Dewar, 2014). Research on skill 

acquisition in games has taken advantage of 

existing performance indices of skill, such as Elo 

ratings (Elo, 1978) in chess databases (Vaci & 

Bilalić, 2017) or similar rankings (e.g., 

TrueSkill) in multiplayer digital games 

(Stafford, Devlin, Sifa, & Drachen, 2017). Game 

scores can also function as performance indices 

of player skill (Stafford & Dewar, 2014). 

Findings in this area are fairly consistent: the 
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more an individual plays a game, the better they 

perform in that game. Nevertheless, there is 

variability in learning trajectories between 

individuals on account of various factors, such 

as exploring different game strategies (Stafford 

& Dewar, 2014) or an individual’s age (Vaci & 

Bilalić, 2017), among others. 

 
Game Learning as Mental Model Matching 

By focusing on performance measures of game 

learning, research on skill acquisition has 

substantially advanced understandings of skill 

acquisition processes. Skill acquisition research 

in games has been supplemented by research 

into the cognitive underpinnings of skilled 

performance. In particular, research on chess has 

identified a number of cognitive explanations for 

skillful performance, such as chunks (i.e., 

configurations of several pieces in a position) 

stored in long-term memory (Chase & Simon, 

1973), templates of positions in long-term 

memory (Gobet & Simon, 1996), depth of 

search while solving problems (Charness, 1981), 

pattern recognition of the current position 

(Chase & Simon, 1973), iterative pattern 

recognition of positions generated in the mind’s 

eye (Gobet & Simon, 1998), and recall of key 

positions (Cooke, Atlas, Lane, & Berger, 1993). 

Because there is limited research into the 

cognitive underpinnings of skill in other games 

(Gobet, de Voogt, & Retschitzki, 2004; e.g., 

Othello, see Wolff, Mitchell, & Frey, 1984), it is 

less clear whether and how particular cognitive 

skills identified in this research might generalize 

to games more broadly. 

Further investigating the cognitive 

underpinnings of skill in addition to game 

performance per se has at least three potential 

benefits. First, in academic game-based learning 

contexts, cognitive understandings of gameplay, 

as opposed to game skill itself, are more 

proximal to game-based learning objectives 

(Boyan & Sherry, 2011), and are therefore of 

greater consequence for understanding the 

process of learning academic material from 

gameplay. Second, while cognitions about a 

game are expected to be related to game 

performance, there are some conditions in which 

cognition and performance may diverge. For 

example, it is possible for players to rely on 

relatively shallow heuristics that are nevertheless 

successful without developing deeper 

understandings of the game (Martinez-Garza & 

Clark, 2017). Alternatively, players may explore 

sub-optimal and ultimately unsuccessful 

strategies in order to deepen their cognitive 

understanding of a game (Gray & Lindstedt, 

2017). Third, in competitions between novice 

players, game outcomes may be due more to 

chance or to opponents’ mistakes than to 

differences in skill. In such a case, although 

performance indices among novice players may 

not be a good indicator of skill, they may 

nevertheless have identifiable differences in 

cognitive understandings. This study contributes 

to understandings of cognitive game learning 

and its relationship to skill by investigating a 

general cognitive mechanism that has been 

proposed to explain learning from games: mental 

model matching (McGloin et al., 2018). 

 

Mental model matching. Mental models (Craik, 

1943; Johnson-Laird, 1980) are a common 

explanation for learning in and from games 

(Clark, Nelson, Sengupta, & D’Angelo, 2009). 

A mental model can be defined as “a cognitive 

representation of situations in real or imaginary 

worlds (including space and time), the entities 

found in the situation (and the states those 

entities are in), the interrelationships between the 

various entities and the situation (including 

causality and intentionality), and events that 

occur in that situation” (Roskos-Ewoldsen, 

Roskos-Ewoldsen, & Dillman Carpentier, 2002, 

pp. 110–111). Although it has been suggested 

that mental models of games can include entities 

beyond game mechanics (Wasserman & Banks, 

2017), mental models of game mechanics are 

most central to mental model matching theory 

(McGloin et al., 2018). 

As an explanatory mechanism for learning 

from games, mental models have been 

incorporated into a more elaborated theory of 

mental model matching (McGloin et al., 2018). 

Mental model matching specifically focuses on 

developing mental models of a game’s 

mechanics, collectively referred to as a game 

model, which structure the causal relationships 
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among entities in a game and afford and 

constrain player actions as players pursue goals 

(Salen & Zimmerman, 2004). When first playing 

a game, individuals can draw on their existing 

mental models of other games (Koban, Liebold, 

& Ohler, 2015) or activities (McGloin & 

Embacher, 2018) to inform their initial 

engagements with the game model. During play, 

individuals run their mental models as cognitive 

simulations (Craik, 1943) to guide in-game 

decision-making (McGloin et al., 2018) by 

predicting future states (Battaglia, Hamrick, & 

Tenenbaum, 2013) and engaging in counter-

factual reasoning to infer causality (Gerstenberg, 

Peterson, Goodman, Lagnado, & Tenenbaum, 

2017). If the predictions players generate from 

running their mental models do not match 

observed outcomes, they revise their mental 

models based on these discrepancies, potentially 

by seeking out additional information in the face 

of failure (Lee, Liu, Jullamon, & Black, 2017). 

As individuals repeatedly play a game, they 

iteratively develop and refine their mental 

models of the game model such that over time, 

mental models align with—or match (McGloin 

et al., 2018)—the game model to an increasingly 

greater extent (Landriscina, 2013). As applied to 

training and learning, individuals are hoped to 

apply their mental models of a game toward 

developing deeper understandings of external 

referents (Martinez-Garza & Clark, 2017)—e.g., 

learning history from Civilization (Black, Khan, 

& Huang, 2014), learning to pilot aircraft from 

flight simulators (Korteling, Helsdingen, & 

Sluimer, 2017), or understanding economics 

from a theme park management game (Foster, 

2011). 

 
Hypotheses 

Both skill acquisition and mental model 

matching are gradual, iterative processes that 

develop over time as individuals repeatedly 

engage with a game. Because of the 

fundamentally longitudinal nature of these 

processes, H1 predicts the following: The 

number of plays of a game will be positively 

associated with (a) performance at that game and 

(b) mental model matching. 

Both skill and mental model matching have 

upper limits: (a) absolute upper limits of the best 

possible performance or mental models that 

completely match a game model or (b) 

potentially temporary plateaus in individuals’ 

skill acquisition and mental model development 

related to suboptimal strategies (Gray, 2017). As 

individuals approach these limits of skill or 

mental model matching, the rate of their gains 

from practice diminish (Destefano & Gray, 

2016; Heathcote, Brown, & Mewhort, 2000; 

Stafford & Dewar, 2014). Because additional 

experience should therefore yield diminishing 

returns, H2 predicts the following: The 

magnitude of the association between plays and 

(a) performance and (b) mental model matching 

will diminish with a greater number of plays. 

 

Method 

Following approval from the university’s 

Institutional Review Board, participants were 

recruited via board game discussion forums 

(BoardGameGeek, Reddit /r/boardgames), 

forums on websites for playing games online 

(BoardGameArena and BoardSpace), and social 

media (Twitter and Facebook) to participate in a 

confidential research study about experiences 

with the board game Hive (Yianni, 2001). 

Participants completed an online questionnaire 

which included questions about participants’ 

experiences with Hive, closed- and open-ended 

items intended to measure mental model 

matching, and demographics. Participants were 

able to opt into a drawing for one $50 gift 

card—88.9% of participants did so. 

 
Study Context: Hive 

Hive is a tabletop game in which two players 

alternate actions, placing and moving hexagonal 

pieces with colorful bugs printed on them. There 

are five different types of bugs, and like chess, 

each has unique movement abilities. The goal is 

to be the first player to surround the opponent’s 

Queen Bee. Hive was chosen as the research 

context for this study for four reasons. First, a 

Hive strategy book (Ingersoll, 2013) was 

available for use as an expert reference model to 

develop measures of mental model matching 

(see Measures). Second, online platforms for 

playing Hive have built-in ranking systems, 
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which provided performance measures of Hive 

skill comparable to those used in classic skill 

acquisition studies. Third, as a turn-based game, 

performance in Hive should be independent of 

motor skill. Therefore, Hive should be 

conducive for investigating the cognitive 

components of mental model matching and 

performance in isolation from behavioral skills. 

Fourth, Hive has active online player 

communities. Therefore, it was deemed likely 

that a sufficient sample of recreational Hive 

players could be recruited. 

 
Participants 

Participants were 325 individuals who 

completed the online questionnaire. Of those 

who voluntarily reported demographic 

information through open-ended self-report, the 

average age was 32.9 (SD = 8.75, median = 31, 

range: 18–64, n = 318), 90.3% (n = 287/318) 

identified as male, and 84.7% (n = 255/301) 

identified as white or Caucasian. Of the 318 who 

reported their country of residence, the majority 

were from the United States (64.5%, n = 205), 

followed by those in various European countries 

(20.1%, n = 64). Of the 315 who indicated their 

education, 81.6% (n = 257) had completed a 

four-year degree or higher. Of the platforms 

available for playing Hive, 89.5% (n = 291) 

indicated that they played the physical tabletop

 game, 32.9% (n = 107) played on 

BoardGameArena, 10.2% (n = 33) on 

BoardSpace, 16.6% (n = 54) on a tablet 

computer, and 8.0% (n = 26) on Steam. These 

demographics were similar to those previously 

reported for board-gaming communities, in 

which 96% identified as male, 68% were North 

American and 25% European, the average age 

was 36, and 68% had an undergraduate degree or 

higher (Woods, 2012). 

 
Measures 

Game plays. Participants were asked to report 

the number of complete games of Hive that they 

had played, and if they recorded their plays, to 

look up that number. On average, participants 

had played Hive 79.5 times (SD = 272.0, median 

= 20, range: 1–3330, n = 325), with 75% having 

played 50 times or fewer, and 50% 20 or fewer. 

The sample distribution of plays was positively 

skewed (skew = 8.5) and highly leptokurtic 

(kurtosis = 84.9). Although only 35.1% (n = 

114) of participants indicated they kept a written 

record of their plays, even this percentage should 

contribute to the reliability of estimation. As 

shown in Figure 1, participants who did not keep 

a written record of their plays appear to have 

been more likely to report plays that were 

multiples of 5, 10, or 25 more than participants 

who did record their plays. 

 
Figure 1. Raincloud plots of reported plays by whether participants recorded their plays 

Note. For participants who did and did not record their plays of the game Hive, reported plays are visualized (adapted 

from Allen, Poggiali, Whitaker, Marshall, & Kievit, 2019) as a density plot, boxplot (thick line: median; upper and 

lower hinges: 25th and 75th percentiles), and scatterplot (raw data). Data were log10-transformed before plotting.



 

Wasserman & Koban (2019)                                                                                                        Game Skill Acquisition as Mental Model Matching 

https://www.journalofexpertise.org                                                                                                               126 
Journal of Expertise / June 2019 / vol. 2, no. 2 

Game skill. Indices of Hive skill were collected by 

asking participants who played Hive online to 

report their rank on BoardSpace (M = 1404.2, SD = 

377.2, range: 0–1924, n = 29) and Elo rating on 

BoardGameArena (M = 259.8, SD = 188.7, range: 

0–1077, n = 106). Because of the low number 

reporting BoardSpace rank, and because 18 

reported both, only BoardGameArena Elo ratings 

were used for analyses (see Figure 2, middle-center 

panel for distribution of reported Elo ratings). 

 

Mental model matching. Mental model matching 

was measured with two novel instruments that had

been previously piloted with undergraduates 

playing Hive for the first time at a large mid-

Atlantic university. An expert’s understanding 

(Ingersoll, 2013) was used as a reference model, or 

benchmark, against which to compare participants. 

By reviewing Ingersoll (2013), closed-ended and 

open-ended items were developed to measure (a) 

understanding of the strengths and weaknesses of 

the five types of bugs in Hive and (b) strategic 

problem-solving ability in realistic Hive scenarios. 

 

 
 

Figure 2. Scatterplots, density plots, and correlations of study variables 

Note. Scatterplots are depicted in the lower half, density plots on the diagonal, and zero-order Pearson correlations 

in the upper half. Bug strengths and weaknesses are sum scores of observed responses, rather than estimated factor 

scores of the latent variable used in analyses.
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Bug strengths and weaknesses. Given the 

conceptualization of mental models as 

comprising entities and their interrelations, 

greater mental model matching should be 

reflected by fuller understandings of the 

characteristics of important entities in a game 

model, as well as the relationships of those 

entities to others. To measure this aspect of 

mental model matching, participants responded 

to two prompts for each of the five types of bugs 

in Hive: “Please describe the strengths of the 

[bug] in as much detail as possible” and “Please 

describe the weaknesses of the [bug] in as much 

detail as possible.” To analyze this open-ended 

data, a codebook (see Supplement 1) of 15 

dichotomous strengths and weaknesses was 

derived from Ingersoll’s (2013) descriptions of 

the strengths and weaknesses of each bug. This 

codebook was used with minor differences in the 

pilot study. All coding was conducted blind to 

all other participant characteristics. After 6.5 

hours of iterative training, the first author and a 

research assistant coded a random subsample of 

50 participants and achieved interrater 

reliabilities of κ ≥ .80 on nine codes, κ = .70–.80 

on five, and κ = .65 with 96% agreement on one 

code that occurred very rarely (<10%) in the 

data. Although κ = .65 was low, it was deemed 

acceptable because intercoder reliabilities that 

account for chance agreement strictly punish 

disagreements when rate of occurrence is low 

(see Gwet, 2002). Subsequently, half of the data 

were coded by each. 

To allow each item to differentially 

contribute to scores on this measure, they were 

modeled as reflective indicators of a latent 

variable with dichotomous indicators, also 

known as item response theory (IRT) using 

weighted least squares estimation with diagonal 

weight matrix (WLSMV) in Mplus 8.1 (Muthén 

& Muthén, 2017). Item response theory models 

estimates a latent ability—in this case, mental 

model matching—in relation to observed 

responses to categorical items and the 

probability of a correct response as a function of 

ability (Raykov, 2017). A two-parameter IRT 

model estimates each item’s discrimination (i.e., 

how sharply it distinguishes between individuals 

of different ability) and difficulty (i.e., at what 

value of ability does it discriminate most 

sharply), whereas a one-parameter (i.e., Rasch) 

IRT model estimates each item’s difficulty but 

fixes all discriminations to be equal. A 

unidimensional, two-parameter IRT model was 

estimated using all 15 strengths and weaknesses 

and data from all 294 participants who 

responded to at least one of these items. Six 

items were dropped: two that over 90% of 

participants answered identically and four with 

less than 10% of variance explained, indicating 

poor local fit. This final nine-item measure, 

which had over 98% covariance coverage for all 

pairs of items, had good global fit, χ2(27, n = 

294) = 36.587, p = .103. Local fit was also 

satisfactory (for all items, R2 range: .14 – .45).1 

A second, more parsimonious one-parameter 

Rasch model was also estimated using WLSMV, 

which again had good global fit, χ2(35, n = 294) 

= 44.569, p = .129. The results of a Chi-square 

difference test2 indicated that the two-parameter 

model was not a significantly better fit than the 

one-parameter model, scaled Δχ2(Δdf = 8) = 

9.062, p = .337. Therefore, the one-parameter 

model was retained for analyses (see Figure 2, 

bottom-right panel for distribution of observed 

sum scores). See Table S2 in Supplement 3 for 

complete parameter estimates with confidence 

intervals. 

 

Strategy understanding. Because individuals 

draw on their mental models to guide their 

decision-making during gameplay, greater 

mental model matching should be reflected by 

better strategic decision-making. To measure 

this aspect of mental model matching, three 

closed-ended strategy puzzles were developed 

based on Ingersoll (2013). These puzzles asked 

participants about (a) the first bug they would 

play (First Bug), (b) the turn on which they 

would play their Queen Bee (Bee Turn), and (c) 

the space to which they would move an Ant to 

attack (Ant Attack). These items, including the 

ranking of responses from best to worst, were 

piloted with Hive players, including Ingersoll 

(personal communication, February 9, 2017), by 

asking them to respond to the items and indicate 

how well they thought each measured 

understandings of Hive. Typical responses 
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ranged from moderately well to very well. 

Ingersoll verified the rank orders of response 

options (personal communication, February 9, 

2017). Each item yielded an ordinal measure of 

three points (Bee Turn, Ant Attack) or four 

(First Bug). See Supplement 2 for questions as 

presented to participants, including images and 

square-bracketed ordinal values assigned to each 

response option before analyses. 

A unidimensional IRT graded response 

model, which—akin to the aforementioned two-

parameter model for dichotomous variables—

estimates the likelihood of selecting a given 

category as a function of ability, was estimated 

using WLSMV for these three ordinal items. 

Although the bivariate covariance coverage of 

all items was over 99%, the model was just-

identified and two of three items had very small 

R2 values, indicating poor fit. See Table S3 in 

Supplement 3 for all parameter estimates with 

confidence intervals. As a follow-up analysis, 

Spearman’s rank correlations among the three 

ordinal variables were performed, none of which 

indicated significant relationships (queen turn 

and first bug: ρ = .10, p = .07, n = 324; Queen 

Bee turn and Ant attack: ρ = .05, p = .42, n = 

323; first bug and Ant attack: ρ < .001, p = .99, n 

= 322). Therefore, the unidimensional graded 

response model was rejected. Items were treated 

as ordinal variables, which Mplus models with 

probit regression as continuous, normally-

distributed latent response variables under 

WLSMV. 

 

Mental model matching measurement model.  

To integrate all measures of mental model 

matching, a model was estimated in which the 

final Rasch IRT model of bug strengths and 

weaknesses covaried with all three strategy 

items. This measurement model had good global 

fit, χ2(62, n = 325) = 89.222, p = .013, but one 

large modification index (MI = 13.116) 

suggested allowing the First Bug to covary with 

one indicator of bug strengths and weaknesses. 

Because this bug strength was one of the reasons 

to play it first, this post hoc correlation was 

deemed reasonable and included in the model. 

This final model had significantly better fit, 

scaled Δχ2(Δdf = 1) =17.557, p < .0001, and was 

used for analyses. See Table S4 in Supplement 3 

for parameter estimates with confidence 

intervals. 
 

Analysis Plan 

To test H1, outcome measures were regressed on 

plays. To test H2, outcome measures were 

regressed on plays and plays-squared, expecting 

the linear regression coefficient to be positive 

(H1: increasing skill and mental model 

matching) and the quadratic regression 

coefficient to be negative (H2: diminishing rate 

of improvement). All models were estimated in 

Mplus 8.1, using MLR estimation for the 

continuous outcome, Elo rating, and WLSMV 

estimation for dichotomous and polytomous 

outcomes, mental model matching. To compare 

nested models, the quadratic term used to test 

H2b was calculated and included in the model 

for H1b; however, model parameters involving 

the quadratic term were fixed to zero for H1b. 

Given planned comparisons between linear and 

quadratic models, outliers were identified in MLR 

as those with Mahalanobis distance Bonferroni-

corrected p < .0005 in both MLR linear and 

quadratic models for skill and with Cook’s D > 1 in 

both WLSMV linear and quadratic models for 

mental model matching. Models including and 

excluding these outliers were tested as a robustness 

check on results. For game skill, two outliers were 

identified, including both participants with the 

greatest number of plays. For mental model 

matching, two outliers were again identified, 

including the one participant with the greatest 

number of plays. 

 
Results 

See Figure 2 for scatterplots and zero-order 

correlations of observed variables. H1 predicted 

that the number of plays of a game would be 

positively associated with (a) performance at 

that game and (b) mental model matching. H1a 

was tested by regressing BoardGameArena Elo 

rating (for the subsample who reported one3) on 

plays (Table 1). In both linear models, regardless 

of whether univariate outliers were included, 

plays were a statistically significant positive 

predictor of Elo rating and explained a 

substantial amount of variance. Depending on 
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the inclusion of outliers, for every 100 plays, 

participants’ Elo ratings were predicted to be 

about 31 points higher (51 points excluding 

outliers). See Figure 3. To put these results in 

perspective, a player with a rating 31 points 

greater than their opponent’s would be expected 

to win about 54% of their matches, with 

expected win percentage increasing by about 4% 

for each additional 31-point rating difference 

(Elo, 1978). H1a was supported4. 

H1b was tested by regressing (a) the latent 

bugs strengths and weaknesses variable (see 

Figure 4) and (b) the three ordinal strategy items 

on plays (Table 2). For most of these variables, 

regardless of the inclusion of univariate outliers, 

plays were a statistically significant positive 

predictor of greater mental model matching, with 

three exceptions: Ant Attack both with and 

excluding outliers, as well as First Bug 

excluding outliers. H1b was partially supported.

       

      Table 1. Regression coefficients for BoardGameArena Elo rating on plays: linear and quadratic models 

Parameter b SE p β SE p R2 p 

Linear (including outliers; n = 106) 

Intercept 211.32 12.84 <.001 1.13 0.22 <.001 .536 .003 

Plays 31.24 5.80 <.001 0.73 0.12 <.001   

Quadratic (including outliers; n = 106) 

Intercept 180.11 11.54 <.001 0.96 0.15 <.001 .656 <.001 

Plays 73.70 11.11 <.001 1.73 0.39 <.001   

Plays2 -1.59 0.35 <.001 -1.05 0.38 .005   

Linear (excluding outliers; n = 104) 

Intercept 193.36 11.92 <.001 1.21 0.20 <.001 .468 .002 

Plays 51.37 9.09 <.001 0.68 0.11 <.001   

Quadratic (excluding outliers; n = 104) 

Intercept 159.05 11.57 <.001 1.00 0.14 <.001 .574 <.001 

Plays 115.83 18.50 <.001 1.54 0.34 <.001   

Plays2 -5.68 1.48 <.001 -0.92 0.33 .006     

 
Note. Plays were centered on 1; intercepts are predicted values for participants who have played Hive once. After 

centering, plays were divided by 100 for estimation and reporting. Because models are just-identified, no global fit 

statistics are available. See Tables S9–S12 in Supplement 3 for parameter estimates with confidence intervals. b = 

unstandardized, β = fully standardized. 

 

H2 predicted that the magnitude of the 

association between plays and (a) performance 

and (b) mental model matching would diminish 

with a greater number of plays. H2a was tested 

by regressing BoardGameArena Elo on plays 

and a quadratic plays term, i.e., plays-squared 

(Table 1). Regardless of whether univariate 

outliers were included, the quadratic term was a

 statistically significant predictor of Elo. Every 

additional 100 plays made was associated with 

about 74 points greater Elo rating (116 points 

excluding outliers), while the magnitude of this 

association simultaneously decreased by about 

1.6 points for each 100 plays (5.7 excluding 

outliers). See Figure 3. H2a was supported. 
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 Table 2. Regression coefficients for mental model matching on plays: linear and quadratic models 

DV Parameter b SE p β SE p R2 p 

 Linear (including outliers; n = 325) 

Bugs Plays 0.53 0.13 <.001 0.82 0.07 <.001 .674 <.001 

Queen Turn Plays 0.14 0.06 .027 0.36 0.16 .025 .123 .209 

First Bug Plays 0.25 0.10 .013 0.65 0.24 .006 .311 .072 

Ant Attack Plays 0.13 0.09 .151 0.35 0.22 .118 .112 .420 

 Quadratic (including outliers; n = 325) 

Bugs Plays 0.53 0.13 <.001 1.24 0.24 <.001 .251 .002 

 Plays2 -0.02 0.006 .004 -1.03 0.33 .002   

Queen Turn Plays 0.14 0.06 .027 0.36 0.16 .025 .026 .192 

 Plays2 -0.004 0.004 .110 -0.03 0.02 .110   

First Bug Plays 0.25 0.10 .013 0.65 0.24 .006 .117 .398 

 Plays2 -0.01 0.009 .559 -0.04 0.06 .559   

Ant Attack Plays 0.13 0.09 .151 0.35 0.22 .118 .045 .587 

 Plays2 -0.002 0.007 .750 -0.02 0.05 .705   

 Linear (excluding outliers; n = 323) 

Bugs Plays 0.59 0.17 <.001 0.76 0.09 <.001 .570 <.001 

Queen Turn Plays 0.21 0.08 .013 0.38 0.15 .011 .139 .152 

First Bug Plays 0.29 0.18 .112 0.56 0.26 .033 .244 .293 

Ant Attack Plays 0.14 0.09 .112 0.27 0.16 .096 .070 .393 

 Quadratic (excluding outliers; n = 323) 

Bugs Plays 0.59 0.17 <.001 0.99 0.38 .009 .266 .225 

 Plays2 -0.02 0.03 .478 -0.61 0.94 .518   

Queen Turn Plays 0.21 0.08 .013 0.38 0.15 .011 .030 .197 

 Plays2 -0.009 0.006 .111 -0.04 0.02 .111   

First Bug Plays 0.29 0.18 .111 0.56 0.26 .033 .190 .780 

 Plays2 -0.003 0.043 .953 -0.01 0.16 .952 
  

Ant Attack Plays 0.14 0.09 .112 0.27 0.16 .096 .024 .292 

  Plays2 -0.004 0.01 .534 -0.02 0.02 .534 
  

 
Note. Plays were divided by 100 for estimation and reporting. Bugs: bug strengths and weaknesses. All models had 

good global fit, χ2 p ≥ .19. In Supplement 3, see Table 1 for global model fit indices and Tables S5–S8 for complete 

parameter estimates with confidence intervals. b = unstandardized. For Bugs, β = fully standardized; for all other, 

ordinal outcome variables, β = standardized x. 
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Figure 3. Elo regressed on plays, linear and quadratic models including outliers 

Note. Linear (solid line) and quadratic (dotted line) models of Elo regressed on plays, including outliers (see Table 1), 

are overlaid on a scatterplot of the raw data up to 1000 plays.

 

H2b was tested by regressing mental model 

matching variables on linear and quadratic terms 

of plays (Table 2). Model comparisons indicated 

that the quadratic model had significantly better 

global fit only when outliers were included, 

scaled Δχ2(Δdf = 4) =11.839, p = .019, but not 

when outliers were excluded, scaled Δχ2(Δdf = 

4) =3.326, p = .505. Closer inspection of 

regression coefficients indicated that the only

 

 significant quadratic term was that predicting 

understanding of bug strengths and weaknesses 

in the model including outliers, such that every 

additional 100 plays was associated with .53 SDs 

greater mental model matching, while the 

magnitude of this association simultaneously 

decreased by .02 SDs per 100 plays. See Figure 

4. H2b was not supported.

 

 

 
Figure 4. Bug strengths and weaknesses regressed on plays, linear and quadratic models including outliers 

Note. Linear (solid line) and quadratic (dotted line) models of bug strengths and weaknesses regressed on plays, 

including outliers (see Table 2), are overlaid on a scatterplot of the raw data up to 1000 plays. In the scatterplot, bug 

strengths and weaknesses are sum scores of observed responses.
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To further probe the results of the probit 

regressions of Queen Turn, First Bug, and Ant 

Attack on plays, estimated probabilities of each 

response as a function of plays were plotted 

using the parameters of the linear model 

including outliers (Figure 5). For all items, the 

probability of choosing the best response 

(category 4 for First Bug, 3 for both others)

 closely approached the asymptote of 1 as plays 

approached 1000. The worst response (category 

1) was always the least likely to be selected, 

even for participants who had only played Hive 

once. The overall unlikelihood of the worst 

response (and second worst in the case of First 

Bug only) may have weakened these measures’ 

sensitivity to game experience.

 

 

Figure 5. Estimated probabilities of responses to strategy understanding questions 
Note. Expected probability of selecting each successively better response to strategy understanding items, from worst (1) 

to best (3 or 4, depending on the item), as a function of plays in the linear model including outliers (see Table 2). Dashed 

lines are non-symmetric bootstrapped 95% confidence intervals with 5000 bootstraps.

 

Discussion 

This study examined the relationship between 

individuals’ game experience, game skill, and 

understanding of the game mechanics in the 

context of the tabletop game Hive. As predicted, 

skill (as measured by Elo rating) as well as 

understanding of the game mechanics 

(conceptualized and measured as mental model 

matching) were positively associated with 

reported game experience. Also as predicted, the 

magnitude of the association between plays and 

Elo rating diminished with additional plays. In 

contrast, only one measure of mental model 

matching exhibited similar diminishing returns, 

and only when outliers were included. These  

 

findings are largely consistent with established  

findings in skill acquisition, are broadly 

consistent with mental model matching theory, 

and provide initial support for the approach 

developed for measuring mental model 

matching. 

This study found support for a curvilinear 

relationship between game skill, operationalized 

as Elo rating, and game experience, such that 

more plays were associated with greater skill, 

but also found that this positive association 

simultaneously diminished with additional plays. 

This finding is consistent with the well-

established finding that skill acquisition occurs 

over repeated engagements with a game 

(Stafford & Dewar, 2014) in a new context: the 
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modern tabletop board game Hive. Simply put, 

the more an individual plays a game, the better 

they are likely to perform at it. Furthermore, the 

curvilinear relationship between experience and 

skill was re-confirmed, such that additional 

experience yields diminishing returns (Ritter & 

Schooler, 2001). Nevertheless, because of the 

sparseness of participants who reported playing 

Hive more than 50 times and the lack of 

longitudinal data, this study’s observed 

curvilinear relationship between number of plays 

and game skill is suggestive but by no means 

definitive. 

This study found that mental model 

matching—i.e., the accuracy with which 

individuals’ cognitive representations of a game 

are aligned with the game model—was also 

positively associated with game experience. For 

most measures, a linear model appeared to better 

reflect the relationship between plays and mental 

model matching better than the expected 

curvilinear model including diminishing returns. 

This finding is still consistent with one of mental 

model matching’s central propositions: that 

players iteratively refine their mental models of 

a game through repeated plays (McGloin et al., 

2018). Through this process, the players’ mental 

models come to more closely align with a 

game’s functional structure that emerges from its 

mechanics. The gradual nature of this process 

may explain why multiple gameplay sessions are 

needed to effect significant learning gains from 

playing educational games (Clark et al., 2016): 

Single sessions do not enable learners to build 

robust mental models. Again, however, these 

results are merely suggestive, not only because 

of aforementioned scarcity of participants with 

many plays and cross-sectional data, but also 

because (a) more research is needed to evaluate 

the mental model matching measurement 

method developed here and (b) alternative 

cognitive explanations cannot be ruled out, as 

discussed in the limitations below. 

 
Measuring Mental Model Matching 

Methodologically, this study suggests that 

operationalizing mental model matching by 

comparing individuals’ understandings to a 

reference model—in this case, an expert’s 

understanding of the game—could be a fruitful 

approach across different games. The open-

ended questions on bug strengths and 

weaknesses reflect declarative knowledge of the 

game, paralleling the multiple-choice chess 

knowledge test developed by Pfau and Murphy 

(1988), which was found to positively correlate 

at least moderately with Elo rating and three 

established measures of chess skill. The closed-

ended strategy puzzles developed in this study 

bear similarity to existing measurement 

strategies in research on chess skill that ask 

participants, for instance, to evaluate board 

positions (e.g., Holding, 1979) or to suggest a 

best subsequent move (de Groot, 1978). Similar 

items can be designed for any (turn-based) 

strategy game, both tabletop and digital, once a 

respective game model is defined as a reference.  

This method can be applied to games with 

very different game mechanics. Irrespective of a 

game’s unique mechanics, its game model could 

be specified, for example, by collecting and 

analyzing concurrent and retrospective verbal 

protocols of highly proficient players (see, e.g., 

Boot, Sumner, Towne, Rodriguez, & Anders 

Ericsson, 2017). Based on these game models, 

open- and closed-ended questions, as well as 

codebooks for analyzing performance records, 

can be developed to compare individuals’ 

understandings to these reference models. Valid 

insights into individuals’ current or progressing 

understandings of different games can inform 

learning research in a meaningful way. For 

example, using these methods, researchers could 

begin to pinpoint the elements of a game model 

that are most crucial for transferring declarative 

and procedural knowledge from games to 

academic and other real-world contexts. 

Nevertheless, the incidental finding that the 

closed-ended strategy measures employed in this 

study did not fit a unidimensional IRT model 

indicates the complexity of this task. There are 

several potential explanations for this finding, 

each of which should be attended to in future 

research. It is possible that mental model 

matching is hierarchical, e.g., starting from more 

elementary understandings of a game’s elements 

in isolation before incorporating the 

relationships among them in more holistic 
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mental structures. Considering the measures 

used in this study, it is possible that 

understanding individual bugs’ strengths and 

weaknesses—which are relatively discrete—are 

foundational to developing predictively or 

practically effective mental models needed to 

solve more holistic strategy problems. 

Alternatively, it may be that individuals learn 

sub-components of an overall game before 

integrating them into a cohesive understanding 

of the whole (on part-whole transfer, see Proctor 

& Vu, 2006). In this case, it would be likely that 

some individuals with a good understanding of 

one part of the game could have a weak 

understanding of others. Such possibilities 

would necessitate multidimensional measures of 

mental model matching that encompass several 

components of individuals’ understandings of 

the game model (e.g., opening/midgame/ 

endgame, pattern recognition).  

 
Linear Versus Curvilinear Relationships between 
Practice and Mental Model Matching 

The lack of statistically significant curvilinear 

relationships between plays and mental model 

matching bears further mention. Because 

participants were recruited primarily from board-

gaming communities, even Hive novices among 

these participants may have had atypically good 

understanding of the game, thus creating a floor 

effect and limiting the range of responses. This 

possibility is supported by the very low expected 

probability of selecting the worst responses to 

strategy understanding items (see Figure 5). At 

the opposite end of the experience spectrum, 

potential diminishing returns may be most 

noticeable at a number of plays greater than that 

reported by the majority of participants, of 

whom 75% had played 50 times or fewer, and 

50% 20 or fewer. These data might not have 

been dense enough at higher levels of expertise 

to reveal a curvilinear relationship—or, more 

fundamentally, to provide definitive evidence for 

any specific functional form. Additionally, the 

positive skew of the sample distribution of plays 

might indicate a dropout bias, in which data 

overestimate the positive linear relationship 

between skill practice and performance. Of 

particular relevance to this study, individuals 

who drop out of a game early often do so for 

performance-related reasons, such as after 

failing to improve sufficiently within a number 

of plays (Steyvers & Benjamin, 2018). Because 

learning functions aggregate many individual 

learning curves, systematic dropouts of 

individuals who fail to improve can exaggerate 

the effect of continued playing. This dropout 

bias typically occurs in datasets without strict 

experimental control, making the cross-sectional 

data obtained in this study vulnerable. Finally, 

measures may have been too insensitive to 

identify diminishing returns. The three ordinal 

items in particular were rather coarse-grained, 

which might have been insufficient to cover the 

breadth of strategic actions Hive allows and 

identify subtler differences in strategic 

understanding among players. For these reasons, 

this study, while being able to confirm a positive 

relationship, provides only preliminary evidence 

for a curvilinear relationship between mental 

model acquisition and game experience. 

 
Limitations and Future Research 

The measures of mental model matching used in 

this study were novel and were not 

straightforwardly unidimensional. Moreover, 

these measures were based on the understanding 

of a single Hive expert (i.e,, Ingersoll, 2013). It 

is possible that different results would have been 

obtained if a different expert’s understanding 

had been used as the reference model. However, 

as a first attempt, these measures appear to have 

some construct validity and generally accorded 

with theoretically-derived and empirically-

driven predictions. Given the difficulty of 

identifying unidimensional IRT models of 

mental model matching, future research should 

investigate the potentially hierarchical or part-

whole nature of mental model matching. Greater 

insight into the structure of this process would 

facilitate better measurement and yield 

actionable empirical insights for applying games 

in learning contexts. For example, for a given 

game and learning objective, the ability to 

identify a particular part of a mental model or 

stage in hierarchical mental model matching 

would allow educators to use games more 

efficiently to teach. Furthermore, it should be 
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possible to construct a common reference model 

that synthesizes several experts’ understandings, 

which may enhance the validity of mental model 

matching measurement. 

Although the methodological approach 

outlined in this study drew directly from mental 

model matching theory, the items developed to 

measure individuals’ declarative and strategic 

knowledge of the game model do not directly 

address how this information is cognitively 

encoded. While mental models are traditionally 

considered to be structured analogously to the 

phenomena they represent (Craik, 1943; 

Johnson-Laird, 1980), other researchers have 

suggested that information is encoded in a 

propositional format (Pylyshyn, 2002), depictive 

format (Kosslyn, Ganis, & Thompson, 2003), or 

a combination of both (and potentially more) 

formats (Pearson & Kosslyn, 2015). 

Consequently, this study contributes to previous 

work establishing mental model matching theory 

as a fruitful approach to describe and explain 

skill acquisition in games (e.g., Boyan & Sherry, 

2011; Martinez-Garza & Clark, 2017; McGloin 

et al., 2018); however, it does not provide 

evidence of the structure of knowledge or of 

mental models, nor can it establish that skill 

acquisition is identical to mental model 

matching. 

Demographically, participants were relatively 

homogeneously male, white, and educated. 

However, as aforementioned, these demographics 

are not dissimilar from those previously found 

among board-gamers. Perhaps more critically for 

this study, players’ experience with Hive was 

skewed toward novices. Such a distribution is 

typical for many games: Most individuals play very 

few times, while a small number of more dedicated 

players play many times (e.g., Pirker, Rattinger, 

Drachen, & Sifa, 2016; Stafford & Dewar, 2014). 

Participants who reported BoardGameArena Elo 

ratings were also more experienced than others and 

were limited to 106 participants. Future cross-

sectional research on mental model matching and 

game skill development should attempt to recruit 

participants to represent more evenly a broader 

range of expertise to facilitate more precise model 

estimation across a larger range of experience. 

Finally, this study was cross-sectional, 

limiting the ability to make causal claims about 

playing and mental model matching. Even so, 

this study’s findings were largely consistent with 

a mental model matching explanation for skill 

acquisition in games. Future research should 

experimentally and longitudinally investigate 

mental model matching processes in order to (a) 

test model matching as an explanatory 

mechanism for skill acquisition; (b) 

microgenetically study individuals’ learning 

curves, which have been found to have distinct 

dynamics from aggregated learning curves 

(Donner & Hardy, 2015); and (c) explore 

potential moderators that may enhance or inhibit 

mental model matching, such as gameplay 

motivations (Sherry, Lucas, Greenberg, & 

Lachlan, 2006), epistemic stances (Martinez-

Garza & Clark, 2017), and specific learning 

strategies like making guided errors (Lorenzet, 

Salas, & Tannenbaum, 2005), deliberate practice 

and training (Campitelli & Gobet, 2008), or 

observing effective opponents (Weintrop & 

Wilensky, 2013). 

 

Conclusion 

This study’s findings suggest that game skill and 

game understanding, conceptualized as mental 

models, proceed largely in tandem with game 

experience. Additionally, the method for 

measuring game understanding developed in this 

study holds promise for studying mental model 

matching across a variety of game types. Further 

research is merited into mental model matching 

as an explanatory mechanism underlying game 

performance, as well as into the potential for 

individuals to transfer mental models of games 

to other contexts. 

 

Endnotes 

1. Additional global fit information for all models 

is reported in Table S1 in Supplement 3. 

2. Satorra-Bentler scaled Chi-square difference 

tests (Satorra & Bentler, 2010) were used for 

all model comparisons among those 

estimated via WLSMV. 

3. This subsample (n = 106) played more 

games of Hive (M = 156.2, SD = 442.4) than 

the overall sample. 
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4. Post hoc subsample analyses were performed 

for all hypothesis tests to compare results for 

participants who recorded their number of 

plays (n = 114) and participants who only 

estimated how often they had played (n = 

211). Overall, results appeared to be similar 

between these groups, but these conclusions 

are tentative because of small group sizes. 

For detailed results, see Tables S13 and S14 

in Supplement 3. 
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