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Abstract 

While the cognitive foundations for mathematical abilities have been investigated thoroughly in 

individuals with and without mathematical difficulties, our current knowledge about the cognitive 

abilities as well as the personality traits associated with mathematical expertise is still scarce. In this 

study we systematically investigated which domain-general (working memory [WM], patterning, visual 

statistical learning [VSL]) and domain-specific cognitive abilities (approximate number system [ANS], 

symbolic numerical magnitude comparison, ordinality, arithmetic), as well as personality traits (Big 

Five, need for cognition [NFC], attitudes towards mathematics), are related specifically to mathematical 

expertise. To this end, we compared 42 mathematicians with 42 non-mathematicians from fields with no 

to minimal mathematical content. In contrast to previous research, this study included not only 

mathematicians with lower expertise (Bachelor and Master students) but also mathematicians with 

higher expertise (faculty members of the institute of mathematics) to provide a more differentiated look 

at mathematical expertise. Mathematicians and non-mathematicians were matched for age, sex, 

educational level and, importantly, for general intelligence. All analyses were done with Bayesian 

statistics to investigate differences and similarities across these groups. After controlling for intelligence, 

the results showed that mathematicians and non-mathematicians had very similar profiles. They were 

comparable in WM capacity, VSL, and general patterning abilities; only in the patterning domain time 

did mathematicians solve more items. Both groups performed equally in ANS and the ordinality task. 

However, mathematicians had a more accurate mental representation of symbolic numbers and a better 

arithmetic fact knowledge. Similarities also emerged in NFC and the Big Five, except for openness 

where mathematicians were less open to experiences. Unsurprisingly, mathematicians had a more 

positive attitude towards mathematics than non-mathematicians. Comparing mathematicians with lower 

and higher expertise did not reveal differences in domain-general and domain-specific abilities. This 

also applied to the personality traits; the groups did not differ except for the motivation to do 

mathematics, in which the faculty members were more motivated than the students. Overall, these 

findings contribute to a deeper and more differentiated understanding of mathematical expertise.  
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Introduction 

There is increasing awareness that mathematical 

competencies are key cognitive abilities in 

modern societies. They are equally important 

for life success as literacy (Parsons & Bynner, 

2005). In light of the paramount importance of 

math competencies, they have been attracting an 
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increasing amount of psychological research in 

the past decades. Most of this research, 

however, has focused on the development of 

numerical and mathematical thinking in children 

(e.g., Vogel et al., 2015) and on individuals 

showing an atypical development in terms of 

learning difficulties (e.g., developmental 

dyscalculia; e.g., Landerl et al., 2017; Vogel & 

Ansari, 2012). Much less is currently known 

about individual differences of math 

competencies in adults and even lesser about the 

psychological foundations of mathematical 

expertise. In particular, it is not clear if expert 

mathematicians show a specific cognitive ability 

and personality profile. Or if mathematicians 

rather have a similar ability profile as experts 

from other academic fields and only differ by 

having a higher interest in mathematics. This 

information can contribute to a better 

understanding of the individual preconditions 

and cognitive mechanisms for attaining high 

performance levels. The aim of the present 

study was to provide the first systematic 

investigation of cognitive abilities and 

personality traits related specifically to 

mathematical expertise. In both ability and 

personality, we distinguished between 

constructs that are considered more domain-

general (i.e., aspects that are associated with 

different cognitive domains) and constructs that 

are considered more domain-specific (i.e., 

aspects specifically related to the domain of 

mathematics). 

 
Cognitive Abilities 

Domain-general Cognitive Abilities  

Intelligence is the most prominent domain-

general predictor of educational achievement 

(Roth et al., 2015) and has been found to be 

related to mathematical expertise (Cipora et al., 

2016; Popescu et al., 2019). Cipora et al. (2016) 

compared 14 advanced Ph.D. students in 

mathematics with two different control groups 

of 15 individuals each, of equal academic 

standing. One group used advanced 

mathematics in their daily work, but individuals 

were not mathematicians per se (e.g., 

communication, chemistry, engineering) and the 

other group had none or little mathematical 

experience (e.g., humanities, social sciences). 

Mathematicians outperformed both groups in 

the Advanced Raven Matrices Test indicating a 

higher fluid intelligence of math experts 

compared to the control groups. In a more 

recent study, Popescu et al. (2019) used the 

Wechsler Intelligence Scale to compare the IQ 

of 19 mathematicians (academics at doctoral or 

postdoctoral level) to those of 19 non-

mathematicians (equal academic standing from 

the field of humanities). While mathematicians 

showed better performance in the performance 

IQ section (e.g., matrix reasoning and block 

design subtest), there was no evidence for group 

differences in the verbal IQ section (e.g., 

vocabulary and similarities subtest). The 

observed differences in intelligence need to be 

considered when interpreting differences in 

other cognitive factors (e.g., numerical 

abilities). In fact, almost all previous studies 

comparing experts in mathematics with those in 

other fields, have not taken intelligence as a 

confounding variable into consideration. Either 

they did not assess intelligence (e.g., 

Castronovo & Göbel, 2012; Dowker et al. 1996) 

or did not control for differences in intelligence 

when interpreting group differences in other 

cognitive abilities (e.g., Popescu et al., 2019). 

This is an important limitation, because 

intelligence correlates consistently with other 

cognitive abilities (e.g., Colom et al., 2008; 

Zippert et al., 2019) and, therefore, could be 

responsible for some of the reported differences 

between mathematicians and non-

mathematicians in domain-specific and/or 

domain-general abilities. This assumption is 

supported by the data from Cipora et al. (2016). 

When fluid intelligence was included as a 

covariate, the beforehand significant result that 

mathematicians possessed a spatially more 

flexible numerical representation, became 

nonsignificant. In the present study, we 

overcame this limitation by matching 

mathematicians with non-mathematicians in 

general intelligence. 

Another classical domain-general ability, 

which is thought to be important for 

mathematical abilities, is working memory 

(WM; Geary, 2011). WM is a domain-general 
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ability that is often listed as a predictor of 

mathematical achievement. A recent meta-

analysis (Peng et al., 2016) including 27,860 

participants of different ages found a significant 

medium correlation between mathematics and 

WM (r = .35). In addition, the results of this 

study showed that the relation between WM and 

mathematics is stronger among individuals with 

mathematical difficulties compared to typically 

developing individuals. However, no studies 

with mathematically gifted or high-performing 

individuals were included in this meta-analysis. 

To the best of our knowledge, only one study 

has so far investigated WM capacity in 

mathematicians. Popescu et al. (2019) found 

that mathematicians (compared to non-

mathematicians) had a higher capacity in a 

backward digit span task, providing first 

evidence that the link between WM and 

mathematical achievement can also be observed 

in math experts.  

More recently, patterning abilities have 

moved into the focus of empirical research 

(MacKay & De Smedt, 2019). They can be 

described as abilities to abstract rules that define 

a predictable sequence of items and to extend 

the sequence (Pasnak, 2017). Abstracting the 

rules of sequences is, however, also a feature of 

some intelligence tests (e.g., number series, 

Raven’s Matrices) suggesting that patterning 

could be rather an aspect of a broad domain-

general ability like fluid intelligence. Despite 

positive medium sized correlations between 

patterning and intelligence measures, patterning 

abilities uniquely predicted arithmetic skills 

above fluid intelligence (Burgoyne et al., 2019). 

Patterning abilities may be related to 

mathematical achievement because mathematics 

inherently involves identifying, extending, and 

describing predictable sequences in objects and 

numbers (Resnik, 1997; Steen, 1988). Typical 

patterning tasks are either pattern extension 

tasks, with items varying in different parameters 

such as shape, size or color (e.g., red – blue – 

blue – red – blue – blue – …; Fyfe et al., 2017), 

or missing item tasks, in which a series of items 

with an underlying pattern has one missing item 

(2 – 4 – ? – 6 – 8; Kidd et al., 2013). First 

longitudinal evidence suggest that patterning 

abilities are not only associated with math 

competencies in children but also are a 

developmental foundation of math competencies 

(Kidd et al., 2013; Rittle-Johnson et al., 2019; 

Schmerold et al., 2017). They even predicted 

mathematical abilities in children when 

intelligence and WM was taken into account (β 

= .24 - .61; MacKay & De Smedt, 2019; Zippert 

et al., 2019). However, there is no study yet on 

the relevance of patterning abilities in adults or 

in mathematicians.  

Another concept that is conceptually close to 

patterning, and could therefore relate to math 

competencies, is statistical learning. Statistical 

learning is the ability to extract the underlying 

regularities of sensory input across time and 

space (Siegelman, Bogaerts, Christiansen, et al., 

2017). In a typical visual statistical learning 

(VSL) task, a sequential stream of meaningless 

shapes is presented on a computer screen and 

participants are tested whether they can detect 

associative patterns that are hidden within the 

sequential presentation. While statistical 

learning has been demonstrated to be associated 

with language and reading abilities in children 

as well as in adults (Arciuli & Simpson, 2012; 

Gabay et al., 2015; Hsu et al., 2014; Schmalz et 

al., 2019; Siegelman, 2020), there is very little 

evidence on the relation between statistical 

learning and mathematics. Zhao and Yu (2016) 

showed that the numerosity estimation of an 

array of dots was more difficult when the arrays 

displayed statistical regularities (containing 

repeated pairs of colored dots across trials) 

compared to when the dots were randomly 

arranged. VSL and numerosity estimation was 

thus suggested to rely on similar mechanisms. 

Further, Levy and colleagues (2020) compared 

female adults with mathematical learning 

difficulties (MLD) to a matched control group. 

Individuals with MLD performed significantly 

worse in a VSL task than the control group. 

While the control group displayed above chance 

statistical learning, the MLD participants did not 

show such a pattern. The result that VSL is 

impaired in individuals with low math 

competencies raises the question if VSL is in 

return exceptionally good in individuals with 

high mathematical expertise. 
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Domain-specific Cognitive Abilities 

In addition to the aforementioned domain-

general abilities, previous research has 

identified a number of domain-specific abilities 

that are argued to be critical for the development 

of math competencies. Among them are basic 

numerical abilities and arithmetic competencies. 

Basic numerical abilities include the 

approximate number system (ANS), symbolic 

numerical magnitude processing and symbolic 

numerical order processing (ordinality).  

The ANS is a cognitive faculty responsible 

for the perception of numerical quantities (i.e., 

sets of objects). To measure ANS abilities, 

typically two dot arrays are presented on a 

computer screen. Participants, without counting, 

have then to decide as quickly and as accurately 

as possible which of the dot arrays is the 

numerically larger one (Price et al., 2012). 

Increasing evidence suggests that this ability is 

positively related to math competencies in 

children as well as in adults, albeit the effect is 

only small to medium in magnitude (r = .24, 

Schneider et al., 2017; Halberda et al., 2012). 

Castronovo and Göbel (2012) examined the link 

between ANS and mathematical performance in 

34 experts (undergraduate and postgraduate 

students of mathematics) and 37 non-experts in 

mathematics (undergraduate and postgraduate 

students of psychology). Contrary to the results 

in typically developing children and adults, all 

measures of ANS precision were not correlated 

with math competencies, neither in the 

mathematics experts nor in the non-experts. 

Furthermore, there was also no significant 

difference between the two groups in ANS 

acuity. Similarly, Popescu et al. (2019) found no 

group differences between mathematicians and 

non-mathematicians in ANS precision. 

However, both studies did not systematically 

control for differences in intelligence. 

Therefore, an explicit control for intelligence is 

needed to further validate the findings that ANS 

does not differ after having reached a certain 

level of mathematical expertise. 

In the past two decades, symbolic numerical 

magnitude processing has gained importance as 

a precursor competence for higher numerical as 

well as math competencies (Merkley & Ansari, 

2016). Performance in this ability is typically 

assessed through a number comparison task in 

which two single-digit Arabic numbers are 

presented simultaneously on a computer screen, 

and participants have to indicate as fast and 

accurately as possible, which of the two 

numbers is the larger one. An important 

indicator for symbolic numerical magnitude 

processing, next to overall performance 

measures of response times and accuracy, is the 

numerical distance effect (NDE). The NDE 

reflects an inverse relationship between the 

response time individuals need to compare two 

numerals and the numerical distance that 

separates them. This measure is thought to 

reflect the acuity of the individual’s mental 

representation of symbolic numbers (Holloway 

& Ansari, 2009; Vogel, Goffin, et al., 2017). 

Individuals are faster and more accurate when 

the distance is large (e.g., 2 - 7) compared to 

when the distance is small (e.g., 2 - 3; Moyer & 

Landauer, 1967). In addition to response time 

and accuracy, the NDE in response times is 

associated with mathematical achievement in 

children as well as in adults (De Smedt et al., 

2009; Goffin & Ansari, 2016; Hohol et al., 

2020; Holloway & Ansari, 2009; Schneider et 

al., 2017; Vogel et al., 2015). In contrast to the 

non-significant results in the ANS, Castronovo 

and Göbel (2012) provided evidence that 

mathematicians are better at comparing 

symbolic magnitudes than non-mathematicians. 

Specifically, mathematicians were in general 

more accurate and had a smaller NDE of 

accuracy but a comparable NDE of response 

times. More recently, however, Hohol et al. 

(2020) did not find differences in mean response 

times and in the NDE of response times between 

advanced Ph.D. students in mathematics (the 

same participants as in Cipora et al., 2016) and 

corresponding reference groups (engineers, 

social scientists, and a reference group from the 

general population). These inconsistent findings 

highlight the need for further research regarding 

the association of symbolic numerical 

magnitude processing and mathematical 

expertise. 

Especially in later development, symbolic 

numerical order processing, also called 
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ordinality processing, is a better predictor of 

math achievement than symbolic numerical 

magnitude processing (Lyons et al., 2016). In 

typical ordinality tasks, three single-digit 

numbers are presented on a computer screen, 

and individuals have to judge if those numbers 

are in order (ascending or descending) or not 

(mixed). As in symbolic numerical magnitude 

comparison, better performance is related with 

higher mathematical achievement in children as 

well as in adults (e.g., Goffin & Ansari, 2016; 

Lyons & Ansari, 2015; Sommerauer et al., 

2020; Vogel et al., 2017). In addition to overall 

performance measures (response times and 

accuracy), the reverse distance effect (RDE), 

which is characterized by faster and more 

accurate responses when the distance between 

numbers is one compared to larger numbers, has 

turned out to be a potential predictor of 

mathematical achievement in adults (Vogel et 

al., 2019). The RDE has been assumed to reflect 

the automatic retrieval and access to number 

sequences (Vogel et al., 2019). No studies have 

yet been done in expert mathematicians. 

Consequently, it is unknown if ordinality 

processing is specifically related to math 

competencies at this level of mathematical 

expertise.  

Another essential step in the development of 

math competencies is the acquisition of 

procedural knowledge of how to solve 

arithmetic problems and the establishment of 

declarative knowledge of arithmetic facts (e.g., 

the multiplication table). There are two common 

stereotypes on the relation between arithmetic 

abilities and mathematical expertise. One is that 

mathematical experts are “human calculators” 

who solve arithmetic problems very fast and 

without errors. The other is that they are 

particularly bad at arithmetic and not willing to 

use their brain for such profane demands. The 

truth seems to lie in-between: While some 

mathematicians are also calculation prodigies, 

expert calculators do not necessarily possess 

exceptional complex mathematical 

competencies (Pesenti, 2005). Consequently, the 

performance of mathematicians is in general not 

comparable to calculation prodigies (Dowker, 

2019). Still, most mathematicians are more 

accurate in arithmetic than individuals from 

other fields of expertise (Dowker, 1992; 

Dowker et al., 1996; Popescu et al., 2019). 

However, most studies on arithmetic 

competencies in math experts used a verbal 

arithmetic task (Popescu et al., 2019) or 

Levine's (1982) computational estimation task 

(Dowker, 1992; Dowker et al., 1996; Popescu et 

al., 2019). Albeit these studies showed that 

mathematicians had better arithmetic abilities 

than the respective control groups, both tasks 

focused on procedural knowledge. Therefore, it 

is unknown if experts in mathematics also have 

a better arithmetic fact knowledge.  

 
Domain-General Personality Traits and 
Domain-Specific Personality Facets 

Beyond the cognitive ability profile of 

mathematicians, we investigated domain-

general and domain-specific aspects of 

personality. Personality traits and interests have 

been found to be important for career choices 

(Robertson et al., 2010), and their investigation 

can, thus, provide a more comprehensive picture 

of the psychological correlates of mathematical 

expertise. In contrast to cognitive abilities, there 

is very scarce evidence on personality traits in 

expert mathematicians.  

The most prominent domain-general 

personality model is the Big Five model. The five 

traits are openness to experiences (individuals with 

high scores have many interests, are imaginative, 

creative, curious, and are willing to explore the 

world), conscientiousness (individuals with high 

scores are goal-oriented, mindful to details, well 

organized, disciplined, and careful), extraversion 

(individuals with high scores are emotionally 

expressive, enthusiastic, and like to be around 

people), agreeableness (individuals with high 

scores are empathic, trustable, cooperative, and 

often engage in pro-social behavior), and 

neuroticism (individuals with high scores are 

anxious, emotional instable, sad, and are 

irritated easily; Costa & McCrae, 2012). 

Clariana (2013) found that a science group, 

comprising students of mathematics, 

technology, and computer sciences, scored 

lower on neuroticism than students from 

humanities and students from educational 
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sciences. The science group also scored higher 

on openness than students from educational 

sciences but comparable to students of 

humanities on agreeableness and 

conscientiousness. Hu and Gong (1990) 

compared 50 professional mathematicians to 50 

professional writers and to a population-based 

control group using the Eysenck Personality 

Questionnaire, which includes the factors 

neuroticism and extraversion. Mathematicians 

scored lower on psychoticism and neuroticism, 

but also on extraversion compared to the two 

other groups. In addition to the Big Five traits, 

need for cognition (NFC) is a promising 

candidate to differentiate between 

mathematicians and non-mathematicians. NFC 

is the tendency to engage in and enjoy cognitive 

processes (Cacioppo & Petty, 1982), and is not 

only an important predictor for tertiary 

academic success (Richardson et al., 2012), but 

can also predict interest in sciences (Feist, 

2012). However, it is unknown whether NFC is 

specifically elevated in mathematicians, given 

that mathematics is an academic field with 

numerous unsolved problems (Guy, 2004; 

Neumann, 2001), or whether NFC is equally 

strong in academics of different domains. With 

this study we aimed to move beyond the 

existing fragmentary evidence on personality 

traits and the stereotypes on “how 

mathematicians are” towards a clearer picture 

on personality traits of mathematicians. 

To our knowledge, there are no studies yet 

on domain-specific personality facets in 

mathematicians. However, in the general 

population math anxiety, attitudes towards 

mathematics, and self-efficacy in mathematics 

have been linked to math achievement. Math 

anxiety is the presence of a fear that emerges in 

situations in which mathematics has to be 

applied (Beilock & Maloney, 2015). Higher 

math anxiety is not only negatively related to 

mathematical achievement in adults (Schillinger 

et al., 2018), but individuals with higher math 

anxiety also avoid math and consequently math-

related careers (Beilock & Maloney, 2015; 

Chipman et al., 1992). Attitudes towards 

mathematics are affective responses to 

mathematics often including the liking or 

disliking of mathematics (enjoyment), the 

tendency to engage in or avoid mathematical 

activities (motivation) and the belief that one is 

good or bad at mathematics (confidence; Neale, 

1969). A meta-analysis indicated that attitudes 

towards mathematics and achievement in 

mathematics are positively, albeit weakly, 

related (Ma & Kishor, 1997). Finally, a positive 

self-belief is related to higher academic 

achievement in general (Valentine et al., 2004) 

and this is also true in the domain of 

mathematics. Math self-efficacy can positively 

predict mathematical achievement (Grigg et al., 

2018; Shen & Pedulla, 2000) but is, as attitude 

towards mathematics, negatively affected by 

math anxiety (Bhowmick et al., 2017).  

 
The Present Study 

As outlined above, the picture of the 

psychological correlates of higher-level math 

competencies and mathematical expertise is 

quite fragmentary. In particular, it is unclear 

whether mathematicians possess a particular 

profile of cognitive abilities and personality 

traits. The main goal of the present study was to 

systematically compare (adult) mathematicians 

and non-mathematicians in a broad range of 

domain-general and domain-specific abilities as 

well as personality traits. The groups were not 

only matched in typical demographic variables 

but also in their general intelligence, thus, 

overcoming the potential confound of 

intelligence. While previous studies have used 

only traditional frequentist analyses, we 

conducted Bayesian analysis. In this vein, we 

could not only provide evidence for differences 

between the groups but also evidence for 

similarities of the groups. 

In contrast to previous research that focused 

on either students of mathematics (Castronovo 

& Göbel, 2012) or faculty members (Dowker et 

al., 1996), we included both mathematicians 

with lower expertise (completing a bachelor or 

master’s degree) and mathematicians with 

higher expertise (faculty members who work as 

doctoral candidates, post-doctoral researchers, 

and professors). We compared their profiles 

with individuals of lower as well as higher 

expertise in academic domains not related to 
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mathematics (e.g., humanities, languages, law). 

In addition to the comparison between 

mathematicians and non-mathematicians, we, 

for the first time, explored which variables were 

associated with the level of mathematical 

expertise. To this end, we compared 

mathematicians of lower and higher expertise. 

Based on the existing evidence reviewed 

above, we expected mathematicians to have a 

higher WM capacity than non-mathematicians, 

to be better at symbolic numerical magnitude 

processing indicated by a higher accuracy and a 

smaller NDE of response times and to solve 

arithmetic problems faster and more accurate. 

We expected mathematicians to be similar to 

non-mathematicians in their ANS. Some 

abilities have been repeatedly found to be 

related to mathematical achievement in the 

general population, but have never been 

investigated in mathematicians, like patterning 

and ordinality. Still, we regarded the evidence 

from those studies as convincing enough to 

assume that mathematicians will solve more 

items in the patterning task than non-

mathematicians as well as display a faster 

response time, a higher accuracy and a smaller 

RDE in the ordinality task. Since statistical 

learning is conceptually close to patterning 

ability and impaired in individuals with MLD, 

we took an exploratory look at this ability in 

mathematicians. Furthermore, supported by 

evidence from research in the general 

population, we assumed that mathematicians 

(compared to non-mathematicians) show lower 

math anxiety, a more positive attitude towards 

mathematics and higher self-evaluated 

competencies in mathematics. However, 

considering the sparse literature on domain-

general personality traits of mathematicians, no 

hypotheses could be derived about the Big Five 

personality traits and need for cognition.  

 

Methods 

Participants 

One hundred and five adults were recruited 

from Austrian universities, mainly from the 

University of Graz. From this sample, 

individuals were allocated to four matched 

groups: mathematicians with lower expertise, 

mathematicians with higher expertise, non-

mathematicians with lower expertise, and non-

mathematicians with higher expertise. 

Mathematicians were defined as individuals 

who study or have studied mathematics. Non-

mathematicians were defined as individuals who 

study or have studied a subject with no to 

minimal explicit mathematical content. Non-

mathematicians were recruited from the 

following subjects: Teaching (different subjects; 

N = 8), Law (N = 5), Musicology (N = 4), 

Translation (N = 4), Philosophy (N = 3), History 

(N = 3), German Philology (N = 3), Classical 

Philology (N = 2), Medicine (N = 2), 

Archeology (N = 1), Dental Medicine (N = 1), 

Geography (N = 1), Art History (N = 1), 

Pedagogy (N = 1), Sport Studies (N = 1), 

Theology (N = 1), and Music Pedagogy (N = 1). 

Individuals with lower expertise were defined as 

currently completing a bachelor or master’s 

degree at an Austrian university, while 

individuals with higher expertise already 

obtained at least a master (or comparable) 

degree and currently work at an Austrian 

university (either as a doctoral candidate, as a 

post-doctoral researcher fellow or as a 

professor). All participants had German as their 

native language. Individuals with lower 

expertise were reimbursed with 50 € for their 

time, participants with higher expertise, who 

were significantly harder to recruit, received 

100 €. The Ethics Committee of the University 

of Graz approved this research, and all 

participants gave informed consent. 

The following procedure was performed to 

match individuals of the four groups. First, non-

mathematicians were matched to 

mathematicians regarding sex, age, and 

professional experience (years spent studying 

and working in their field of expertise). This 

matching was done by recruiting the 

mathematicians first and then finding non-

mathematical study twins. In a second step, 

mathematicians and non-mathematicians were 

matched on general intelligence. In the original 

sample, mathematicians (M = 185.81, SD = 

27.99) had a higher general intelligence score 

than non-mathematicians (M = 164.54, SD = 

26.08; BF01 = 0.01, BF10 = 204.85) highlighting 
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the importance of this step. Matching was done at 

group level by excluding non-mathematicians with 

low intelligence and mathematicians with high 

intelligence.  

The final sample consisted of 84 individuals, 

42 were mathematicians (25 men, 17 women) and 

42 were non-mathematicians (25 men, 17 women). 

To ensure that intelligence-matched 

mathematicians and non-mathematicians differed 

only in their amount of mathematical expertise, we 

compared their performance in specific intelligence 

domains (numerical, verbal, and figural) and their 

performance in a mathematical achievement test, 

measuring higher-level math competencies. 

Additionally, we asked participants to estimate the 

overall time they spent with mathematics in their 

lives and to report their final math grade in school 

as well as their grade average in their field of study 

(for further information on the measurements, see 

the Instruments section). Evidence was strong that 

mathematicians had a higher mathematical 

achievement score (effect size delta (δ) = 1.99, 

95% Credible Interval (CI) [1.46, 2.53]), better 

grades in mathematics during school (δ = -1.40, 

95% CI [-1.89, -0.91]) and spent approximately 

four times as much time with mathematics than 

non-mathematicians did (δ = 0.78, 

95% CI [0.34, 1.23]). As ensured by the matching 

procedure, mathematicians and non-

mathematicians were similar in general intelligence 

(δ = 0.18, 95% CI [-0.22, 0.59]). However, there 

was anecdotal evidence that mathematicians had 

higher numerical intelligence (δ = 0.44, 95% CI 

[0.03, 0.87]), while non-mathematicians had higher 

verbal intelligence (δ = -0.42, 95% CI [-0.85, -

0.01], see Table 1). 
 

Table 1. Descriptive statistics and Bayesian statistics (Bayesian t-test) for mathematicians (Math.) and non-

mathematicians (Non-math.)  

 

Variable 
Math. 

M (SD) 

Non-math. 

M (SD) 

BF01 

No difference 

BF10 

Difference 

Age (years) 29.31 (12.00) 29.07 (8.62) 4.37 0.23 

Experience (years) 10.35 (11.92) 9.37 (8.68) 4.06 0.25 

General intelligence 

(raw score) 
176.57 (22.85) 171.79 (23.67) 2.98 0.34 

Numerical intelligence 

(raw score) 
58.29 (12.67) 51.74 (13.55) 0.55 1.81 

Verbal intelligence  

(raw score) 
42.81 (7.57) 46.36 (7.25) 0.46 2.16 

Figural intelligence  

(raw score) 
75.48 (10.53) 73.69 (12.42) 3.52 0.28 

Mathematical 

achievement (raw score) 
28.41 (2.74) 18.79 (6.04) 0.00 408,800,000,000 

Hours spent with 

mathematics 
19,351 (21,325) 4,651 (12,139) 0.01 116.76 

Math grade (1 to 5)b 1.19 (0.46) 2.33 (1.00) 0.00 3,928,000 

Grade average (1 to 5) b 2.13 (2.19) 1.75 (0.69) 2.64 0.38 

 

Note. Bayesian t-tests analyses, BF01 represents evidence for the null hypothesis (no difference between 

groups); BF10 represents evidence for the alternative hypothesis (difference between groups). BFs bigger than 

1 indicate anecdotal evidence, BFs bigger than 3 provide moderate evidence, BFs bigger than 10 provide 

strong evidence (Jeffreys et al., 1961). Abilities where the Bayes analyses show moderate or strong evidence 

for group differences are bolded. 
b in Austria the grades are 1 (very good), 2 (good), 3 (average), 4 (enough) and 5 (not enough), students 

receiving a 5 fail  
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Because this study also intended to explore 

which variables are associated with the level of 

mathematical expertise, we compared 21 

mathematicians of lower expertise (14 men, 7 

women) and 21 mathematicians with higher 

expertise (11 men, 10 women). There was 

strong evidence that the two groups differed in 

age (δ = -1.27, 95% CI [-1.99, -0.58]), 

experience (δ = -1.30, 95% CI [-2.01, -0.61]) 

and time in their life they have spent with 

mathematics (δ = -1.21, 95% CI [-1.90, -0.53]). 

This was due to the definition of the different 

levels of expertise, with mathematicians with 

lower expertise (LE) being students and 

mathematicians with higher expertise (HE) 

being university employees who have already 

obtained a master’s degree. Mathematicians 

with HE were significantly older, had more 

experience in their field, and had spent more 

hours in their life with mathematics. However, 

there was anecdotal evidence that 

mathematicians with different amount of 

expertise were similar in intelligence, 

mathematical achievement and in grades (see 

Table 2).

 
Table 2. Descriptive statistics and Bayesian statistics (Bayesian ANCOVA) for mathematicians with lower  

expertise (Math. LE) and mathematicians with higher expertise (Math. HE)  

 

Variable 
Math. LE 

M (SD) 

Math. HE 

M (SD) 

BF01 

No difference 

BF10 

Difference 

Age  

(years) 
22.38 (2.85) 36.24 (13.65) 0.00 406.30 

Experience  

(years) 
3.36 (2.32) 17.33 (13.55) 0.00 543.59 

General intelligence 

(raw score) 
177.00 (19.29) 176.14 (26.42) 2.54ᵃ 0.39ᵃ 

Numerical intelligence 

(raw score) 
58.52 (12.89) 58.05 (12.76) 2.91ᵃ 0.34ᵃ 

Verbal intelligence  

(raw score) 
42.29 (6.97) 43.33 (8.25) 2.56ᵃ 0.39ᵃ 

Figural intelligence  

(raw score) 
76.19 (7.54) 74.76 (13.01) 2.06ᵃ 0.49ᵃ 

Mathematical achievement 

(raw score) 
28.05 (3.38) 28.76 (1.92) 2.90ᵃ 0.35ᵃ 

Hours spent with 

mathematics 
7,386 (4 358) 31,317 (24,751) 0.00 243.59 

Math grade  

(1 to 5)b 
1.24 (0.54) 1.14 (0.36) 2.36ᵃ 0.42ᵃ 

Grade average  

(1 to 5) b 
2.29 (0.89) 1.97 (3.00) 1.85ᵃ 0.54ᵃ 

 

Note. Bayesian t-tests analyses, BF01 represents evidence for the null hypothesis (no difference between 

groups); BF10 represents evidence for the alternative hypothesis (difference between groups). BFs bigger than 

1 indicate anecdotal evidence, BFs bigger than 3 provide moderate evidence, BFs bigger than 10 provide 

strong evidence (Jeffreys et al., 1961). Abilities where the Bayes analyses show moderate or strong evidence 

for group differences are bolded. 

ᵃ age was included as a covariate in the null model 
b in Austria the grades are 1 (very good), 2 (good), 3 (average), 4 (enough) and 5 (not enough), students 

receiving a 5 fail  
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Instruments 

Demographical and Control Variables 

Demographical variables 

Participants reported their sex, age, mother 

language, handedness, highest level of 

education, and their field of study. We used 

several questions to assess mathematical 

expertise. First, participants were asked to state 

the grade in mathematics that they received in 

their last year of school. Further, as an indicator 

for their amount of experience we asked 

participants to indicate in which semester they 

are currently enrolled. If they already graduated, 

we asked the participants to indicate how many 

years of working experience they have in their 

current field and to report their grand average of 

their course evaluations at the University. 

Finally, participants were instructed to estimate 

the number of hours they spent with 

mathematical activities to the present day 

(including school lessons, doing homework, 

studying, extracurricular mathematical 

activities, etc.).  

Berlin Intelligence Structure Test, short version 

(BIS-T)  

The Berlin Intelligence Structure Test (Jäger et 

al., 1997) is a structured paper-pencil 

assessment of intelligence. We used the short 

version of this intelligence test, consisting of 15 

subtasks. Each subtask is a different 

combinations of one of the three domains of 

intelligence (numerical, verbal, and figural) as 

well as of one of the four operational abilities 

(processing speed, memory, reasoning, and 

creativity) described in the Berlin intelligence 

structure model (Jäger, 1984). The internal 

consistencies of the separate scales are 

considered appropriate (Cronbach’s 

α = .75 - .89; our sample: Cronbach’s 

α = .72 - .77). The processing time was 

approximately 45 minutes. For further analyses, 

raw scores of the tasks were summed up for 

each of the three subscales and all raw scores 

were summed up for a general intelligence 

score. General intelligence scores ranged from 0 

to 312, numerical intelligence scores from 0 to 

72, verbal intelligence scores from 0 to 60 and 

figural intelligence scores from 0 to 180. 

Mathematics test for selection of personnel (M-PA) 

The mathematics test for selection of personnel 

(Jasper & Wagener, 2013) is a paper-pencil test 

originally constructed to assess mathematical 

abilities for job applications and was used to 

assess performance in higher-order 

mathematics. The official short version consists 

of 31 mathematical problems, has a good 

internal consistency (Cronbach’s α = .89; our 

sample: Cronbach’s α = .92) and correlates very 

high (r = .93) with the long version (Japer & 

Wagener, 2013). Mathematical topics covered 

are fractions, conversion of units, 

exponentiation, division with decimals, algebra, 

geometry, roots, and logarithm. The processing 

time is limited to 15 minutes. For further 

analyses, all correct answers were counted, 

resulting in a raw score ranging from 0 to 31.  

 

Domain-general Abilities 

Working Memory (WM) 

Working Memory was assessed with a complex 

span paradigm based on Berkowitz Biran (2017) 

and included a numerical, a verbal and a figural 

complex span task. In the complex span task, 

two tasks had to be carried out simultaneously, 

one storage and one processing task. In the 

storage part, simple items had to be remembered 

in the correct order and recalled at the end of 

each trial. In the processing part simple 

judgments had to be made. Storage and 

processing parts were presented alternating 

throughout each trial. In the numerical WM 

task, simple additions and subtractions with 

operands from 1 to 10 had to be judged 

according to their correctness. The storage part 

had numbers as items to be remembered. In the 

verbal WM task, simple German sentences had 

to be judged according to their truth content; 

letters from A to Z had to be remembered. In the 

figural WM task, patterns consisting of black 

blocks had to be judged according to their 

symmetry; the storage part consisted of 

locations of black squares in a pattern of black 

and white squares. To prevent a response bias 

exactly 50% of the processing stimuli were 

correct. The order of the three domains was 

randomized for each participant. After two 

practice trials with a span of three and four, 
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participants had to work on six trials with each a 

different set size. Set sizes ranged from four to 

nine. Each trial started with a fixation point for 

1000 ms followed by the first processing task, 

which was presented until an answer was made or 

3000 ms elapsed. Answers were made by clicking 

on the left arrow key and right arrow key on the 

keyboard. After the processing stimulus an interval 

of 100 ms with a blank screen appeared, followed 

by the storage item, which was presented for 

1000 ms. After all items were presented, a question 

mark appears on the screen and the participants had 

to type in the presented numbers and letters with 

the keyboard. In the figural WM task, the same 

pattern of nine squares appeared, all white this 

time. The participants had to click with the mouse 

on the squares, which were presented in black 

before. Participants were instructed to reproduce 

the stimuli in the before presented order and guess 

rather than leave one out when they did not 

remember an item. Within a trial, the items to be 

stored as well as the processing stimuli were 

randomly ordered and included no repetition. In 

each domain, the trials varying in set size were 

randomly ordered, so that the participants could not 

predict the length of the next trial. The processing 

time was approximately 15 minutes. Berkowitz 

Biran (2017) reported a good internal consistency 

for the complex span tasks (Cronbach’s αs: 

numerical = .79, verbal = .89, figural = .81). For 

reliability estimation from our sample, we used the 

split-half (odd-even) method with the Spearman-

Brown adjustment. Reliability from our sample 

was acceptable (numerical = .74, verbal = .68, 

figural = .77). For further analyses, a working 

memory capacity score for each domain was 

calculated. The capacity was calculated by adding 

up the number of correctly recalled items per 

domain resulting in scores ranging from 0 (if no 

item was recalled correctly) to 39 (if all items in 

each trial were recalled correctly). Additionally, a 

mean WM capacity score was calculated by 

averaging the scores of the three domains.  

Patterning 

To measure patterning ability in adults, two 

patterning tasks for children (MacKay & De 

Smedt, 2019; Fyfe et al., 2017) were adapted. 

Five patterning tasks in different domains were 

presented randomly to each participant. The 

domains were numbers, times on an analog 

clock (time), letters, three-dimensional fishes 

that are rotated (rotation), and geometrical 

objects varying in shape, size, and color (shape). 

Each task included six items in ascending 

difficulty. Except for the geometrical objects, 

each item consisted of five stimuli with one 

missing. In the geometrical objects task, 11 

forms were presented. One of the stimuli was 

missing and indicated through a question mark. 

Participants had to complete the pattern by 

selecting one of four solution options presented 

below. Every part began with an instruction and 

two easy practice trials in which feedback was 

given. Each item started with a fixation cross for 

1000 ms, the item itself was presented until an 

answer was given. Answers were given by 

typing in the number of one of the four 

presented solutions. For every part, a time limit 

of 3 minutes was given, resulting in 15 minutes 

for the whole paradigm. For further analyses, 

raw scores for each domain (0 to 6 items 

correct) and for the whole patterning task (0 to 

30 items correct) were used. We estimated 

reliability from our sample using the internal 

consistency score Cronbach’s α. Reliability for 

the specific domains were questionable 

(letter = .20, number = -.31, rotation = -.19, 

shape = -.06, time = .04). There are two reasons 

for this inappropriate internal consistency. First, 

the six items per domain were ascending in 

difficulty, therefore there was a large variance in 

item difficulty which decreases the reliability 

(Gulliksen, 1945). Second, each item was 

worked on by a different number of participants 

leading to further problems in calculating 

reliability. While the reliability for the sum 

score of the whole task clearly was better, it is 

still questionable (.63). This low reliability must 

be kept in mind when interpreting the results 

obtained from this task. 

Statistical learning 

To measure statistical learning, a visual 

statistical learning paradigm was constructed 

based on Siegelman, Bogaerts, and Frost (2017). 

Participants viewed, without any instruction, a 

sequential stream of meaningless shapes, which 
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were, unknown to the participants, organized 

into triplets. The shapes in one triplet co-

occurred with a transitional probability of 1, 

while the transitional probability of the shapes 

between triplets was much lower. After the 

presentation of 192 shapes/64 triplets, 

participants had to state, which triplet they felt 

is the most familiar. In sum, participants had to 

make 42 forced choices. Overall, this task had a 

processing time of approximately 15 minutes. 

For further analyses, the proportion of correctly 

answered items was used. According to 

Siegelman, Boegarts, and Frost (2017) this task 

had a very good reliability (Spearman-Brown 

corrected split-half = .83). However, the split-

half reliability (Spearman-Brown adjusted) from 

our sample was questionable (.65). Additionally, 

only 7% of all individuals showed above chance 

performance. These limitations are addressed in 

more detail in the discussion.  

 

Domain-specific Abilities 

Approximate Number System (ANS) 

To measure ANS we used the software 

Panamath (Halberda et al., 2008; 

http://panamath.org). In this ANS task, two dot 

arrays, one blue and one yellow one, were 

presented simultaneously beside each other and 

the participants had to identify the dot array 

containing more dots without counting. The 

ratio between the dot arrays varied from 1.1 to 

2.0, with all items distributed evenly across 

ratios. To prevent participants from answering 

based on overall surface of the dots (more dots 

= larger surface), the ratio between surface and 

number of dots was varied. The dot arrays were 

composed of 5 to 30 dots. Overall, 120 items 

were presented, which approximately took 5 

minutes. After the instruction, the task started 

with a fixation cross. Dot arrays were presented 

for a maximum of 700 ms or until an answer 

was given, to eliminate the possibility of 

afterimages, a 200 ms mask was presented after 

each trial. Between each trial a blank space 

appeared for 1200 ms. If the yellow dot array 

was larger, participants had to press F on the 

keyboard, if the blue dot array was larger J had 

to be pressed. In half of the trials the yellow dot 

array was the larger one, the other half, the blue 

one was larger. We estimated reliability from 

our sample using the split-half (odd-even) 

method with the Spearman-Brown adjustment. 

Reliability for response time was good (.88) For 

further analyses we used the accuracy, the 

response time, and the weber fraction (w) which 

was calculated by Panamath and is an index for 

how good individuals are in discriminating two 

dot arrays. A smaller w indicates a more precise 

ANS.  

Symbolic numerical magnitude comparison 

In the symbolic numerical magnitude 

comparison task, two numbers (Arabic digits) 

were presented side by side and the participants 

had to judge which number is the larger one 

(after Moyer & Landauer, 1967). To prevent a 

response bias, in half of the trials the larger 

number was on the left side, in the other half on 

the right side. Answers were given by clicking 

either the left arrow key on the keyboard if the 

left number was larger, or the right arrow key if 

the right number was the larger one. The task 

started with an instruction and practice trials 

that provided feedback, afterward all 72 

possible combinations of the numbers 1 to 9 

were presented twice, resulting in 144 trials 

which took approximately 5 minutes. The usage 

of all possible combinations also led to 

numerical distances between number pairs from 

1 to 8. Each trial started with a fixation point for 

500 ms, afterwards the two numbers were 

presented for a maximum of 1500 ms. If the 

participant answered before the end of 1500 ms, 

a blank screen was presented until 1500 ms 

were reached. For further analyses, proportion 

of correctly answered items (ACC) and response 

time (RT) were used. The numerical distance 

effect (NDE) was calculated according to Goffin 

and Ansari (2016) by subtracting the mean 

response time of the distances 6, 7, and 8 from 

the mean response time of the distances 1, 2, 

and 3 and dividing it by the mean response time 

of the distances 1, 2, 3, 6, 7, and 8 (NDE = 

(meanRT1;2;3 – meanRT6;7;8) / meanRT1;2;3;6;7;8)). 

Bigger scores therefore indicate a larger 

distance effect and a less accurate mental 

representation of symbolic numbers. We 

estimated reliability from our sample using the 
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split-half (odd-even) method with the 

Spearman-Brown adjustment. Reliability for 

response time was very good (.99), reliability 

for the NDE was questionable (.38). More 

information on how the relatively low reliability 

of the NDE may affect the interpretability of the 

results is provided in the discussion. 

Ordinality 

In the ordinality task participants had to judge if 

three numbers (Arabic digits) presented on the 

screen were ordered according to size or not 

(after Vogel et al., 2017). Only numbers from 1 

to 9 were used with the distance between 

number one and two being the same as the 

distance between number two and three. 

Possible distances were 1, 2 and 3 with each 

distance presented equally often. 25% of the 

numbers were ordered ascendingly, 25% were 

ordered descendingly and 50% were not 

ordered. Participants had to press the left arrow 

key if the numbers were not ordered and the 

right arrow key if they were ordered. The task 

started with an instruction and practice trials 

that provided feedback. Afterwards, 176 number 

triplets were presented, which took about 8 

minutes. Each trial started with a fixation point 

for 500 ms, the number triplets were presented 

for a maximum of 2000 ms. If participants 

answered before, a blank screen was presented 

until 2000 ms were reached. For further 

analyses, proportion of correctly answered items 

(ACC) and response time (RT) were used. We 

calculated a reverse distance effect (RDE) 

following the approach from Goffin and Ansari 

(2016) for the ascending trials, because the 

relationship of the RDE and arithmetic seems to 

be stronger for numerically ascending in-order 

trials compared to descending in-order trials 

(Vogel et al., 2019). The RDE was calculated by 

subtracting the mean response time of the 

distance 1 from the mean response time of the 

distances 2, and 3 and dividing it by the mean 

response time of the distances 1, 2, and 3 (RDE 

= (meanRT2;3 – meanRT1) / meanRT1;2;3)). 

Bigger scores therefore indicate a larger reverse 

distance effect. We estimated reliability from 

our sample using the split-half (odd-even) 

method with the Spearman-Brown adjustment. 

Reliability for response time was very good 

(.99), reliability for the RDE was questionable (-

.09). More information on how the insufficient 

reliability of the RDE may affect the 

interpretability of the results is provided in the 

discussion. 

Arithmetic 

To assess arithmetic abilities a multiplication 

task was presented. The multiplication task 

focused on arithmetic fact as well as procedural 

knowledge. Therefore, single-digit 

multiplications and two-digit multiplications 

were presented. Participants started with 62 

single-digit multiplications (e.g., 6 x 2), which 

are considered as small problems typically 

retrieved from memory (arithmetic fact 

knowledge). After a short break, 32 two-digit 

multiplications, later called large problems, had 

to be solved, which typically require calculation 

procedures. The task started with practice trials 

with implemented feedback and took 

approximately 15 min. Multiplications were 

presented in a random order. Each trial started 

with a fixation point for 1000 ms followed by a 

multiplication. Participants had to press the 

enter key as soon as they knew the answer, 

afterwards they typed in the answer using the 

keyboard. To approve the given answer and go 

to the next multiplication the space bar had to be 

pressed. For further analyses, the proportion of 

correctly solved small multiplications (small 

ACC) and the mean response time (small RT) as 

well as the proportion of correctly solved large 

multiplications (large ACC) and the mean 

response time (large RT) were used. We 

estimated reliability from our sample using the 

split-half (odd-even) method with the 

Spearman-Brown adjustment. Reliability for 

response time of the small multiplications was 

very good (.97), reliability for the response time 

of the large multiplications was also very good 

(.96). 

 

Domain-General Personality Traits 

Big Five 

The Neo-FFI-30 is a 30-item questionnaire 

(Körner et al., 2008) to assess the big five 

personality traits (openness, conscientiousness, 
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extraversion, agreeableness, neuroticism). 

Participants had to state on a 5-point Likert 

scale how strongly they agree or disagree to 

statements about their personality. All five traits 

show an appropriate internal consistency 

(Cronbach’s α = .67 - .81; our sample: 

Cronbach’s α = .72 - .77). For further analyses, 

items were recoded according to the manual and 

an aggregated score for each trait was 

computed. Scores ranged from 1 to 5 with 

higher scores indicating stronger trait 

characteristics. 

Need for cognition 

Need for cognition is the tendency to engage in 

and enjoy effortful analytic activity and was 

measured through a 33-item need for cognition 

scale for adults (Bless et al., 1994). Participants 

had to read a statement and must choose on a 7-

point Likert scale how strongly they agree or 

disagree. The need for cognition scale has a 

high internal consistency (Cronbach’s α = .86; 

our sample: Cronbach’s α = .91). For further 

analyses, items were recoded according to the 

manual and an aggregated score was computed 

with score ranging from 1 to 7 with higher 

scores indicating a higher need for cognition. 

 

Domain-Specific Personality Facets 

Math anxiety 

We used the German adaptation of the 

Abbreviated Math Anxiety Scale (AMAS-G; 

Schillinger et al., 2018) to measure math 

anxiety. Participants had to rate on a 5-point 

Likert Scale how anxious they feel in a certain 

situation. Five items described situations in 

which mathematical content must be learned 

(learning math anxiety) and four items referred 

to situations in which mathematical 

performance is evaluated (math evaluation 

anxiety). The internal consistency of the 

AMAS-G is high (Cronbach’s α = .89; our 

sample: Cronbach’s α = .90), and in our sample 

the two subscales correlated high (r(80) = .70, 

p < .001), therefore a mean math anxiety score, 

ranging from 1 to 5, with higher scores 

indicating higher math anxiety, was used for 

further analyses. 

 

Attitude towards mathematics  

We measured attitude towards mathematics with 

three questions asking how much participants 

enjoy mathematics, how confident they feel 

doing mathematics, and how motivated they are 

in mathematics. Participants answered on a 5-

point Likert scale, in further analyses, each of 

the three questions is analyzed separately.  

Self-evaluated competencies in mathematics  

Participants had to self-evaluate their 

competencies by stating how confident they feel 

while dealing with different everyday 

mathematical situations (e.g., how good are you 

at calculating 15% tip?). Eight questions were 

given, and participants answered using a 6-point 

Likert scale. The eight questions had a sufficient 

internal consistency in our sample (Cronbach’s 

α = .78), therefore, for further analyses, a mean 

score ranging from 1 to 6 was calculated with 

higher scores indicating higher self-evaluated 

math competencies.  

 

Procedure  

The study consisted of two test sessions: an 

online test session and a group test session. One 

to 56 days (M = 15.76, SD = 12.25) were 

between the online and the group test session. 

The online test session was created with 

Limesurvey and comprised the following parts: 

First, general information about the study was 

given, participants had to give informed consent 

and create a code to guarantee anonymity. 

Afterwards, the online test session started with 

the assessment of demographic data, followed 

by questions on the attitude towards 

mathematics, math anxiety and self-evaluations 

of their math competencies. Finally, participants 

completed the NEO-FFI-30 and the NFC 

questionnaires, and gave their contact 

information to be invited to the second test 

session. The participants needed approximately 

15 minutes to complete the online test session. 

In the second test session, domain-general as 

well as domain-specific abilities were assessed 

in a group setting (max. four participants) with 

paper-pencil as well as computerized tasks. All 

computerized tasks were presented on a 15” 

Lenovo Laptop, and, except for the ANS task, 
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had been programmed with PsychoPy. Depending 

on the individual speed of the participants, this part 

took between two and a half and three hours 

including two short breaks after one and two third 

of the time. The sequence of the tasks was the 

following: BIS (45 min) – Break – WM (15 min) – 

Symbolic numerical magnitude processing (5 min) 

– Arithmetic (10-20 min) –,ANS (5 min) – 

Patterning (15 min) – Break – MPA (15 min) – 

Ordinality (7 min) – VSL (15 min). After 

completion of the last task, participants were 

thanked for their participation and reimbursement 

was provided. 

 

Statistical Analyses 

We used Bayesian Analyses in the free access 

software JASP (Jasp Team, 2020; Goss-Sampson, 

2020) for all group comparisons. In traditional 

frequentist analyses a non-significant effect is often 

interpreted as evidence for the null hypothesis, 

however only a small number of the non-significant 

effects are caused by the null hypothesis being true. 

In contrast, Bayesian analysis can not only provide 

information about the likelihood the alternative 

hypothesis (differences between groups) but also 

information about the likelihood of the null 

hypothesis (similarities between groups; Brysbaert, 

2019). Bayesian analyses provided a Bayes factor 

(BF), which is a ratio that weights the likelihood of 

the data under the null-hypothesis against the 

likelihood of the data under the alternative–

hypothesis. BF01 provided evidence for the null 

hypothesis, i.e., no difference between groups. 

BF10, in contrast, provided evidence for the 

alternative-hypothesis, i.e., difference between 

groups. However, BF10 and BF01 cannot be 

viewed as independent because they are 

mathematically related (BF10 = 1 / BF01). The 

larger the BF is, the stronger is the evidence in 

support of one of the two hypotheses. We classified 

the strength of the evidence according to Jeffreys 

(1961). If the BF was larger than 1 but less than 3, 

the evidence was anecdotal and not considered as 

sufficient. BFs between 3 and 10 indicated 

moderate evidence for the corresponding 

hypothesis and BFs above 10 were assumed as 

strong evidence.  

Two types of Bayesian analyses were 

conducted. First, we ran Bayesian t-tests to find 

evidence for similarities and differences between 

mathematicians and non-mathematicians. Second, 

we ran Bayesian ANCOVAs with age as a 

covariate to find evidence for similarities and 

differences between mathematicians with lower 

expertise and mathematicians with higher expertise. 

The latter procedure was chosen because 

mathematicians with higher expertise were on 

average 14 years older than mathematicians with 

lower expertise. In all analyses, the default setting 

for Bayesian t-test as implemented in JASP 

(Cauchy prior with a width of 0.707) were used. 

Both the data from the intelligence matched 

sample (N = 84), and the data from the full sample 

(N = 105), as well as the analysis scripts are 

available at the Open Science Framework 

(https://osf.io/cf6bd/). 

 

Results 

Domain-general and Domain-specific 
Cognitive Abilities 

Domain-general Abilities 

Bayesian statistics depicted in Figure 1a show 

evidence for or against group differences between 

mathematicians and non-mathematicians in 

domain-general abilities. We expected 

mathematicians to solve more items in all 

patterning tasks, however they only performed 

better in one patterning domain. Strong evidence 

(BF10 = 172; δ = 0.81, 95% CI [0.36, 1.26]) 

showed that mathematicians solved more 

patterning items in the domain time. However, we 

found moderate evidence for similarities in the 

patterning domain rotation as well as anecdotal 

evidence for similarities in the domains shape, 

number, and letter, which was unexpected. The 

large BF in the domain time led to anecdotal 

evidence for the result, that mathematicians solved 

more patterning items in total (δ = 0.45, 

95% CI [0.04, 0.88]). Contrary to our 

expectations, there was moderate evidence for 

similarities in numerical WM capacity, and 

anecdotal evidence for similarities in general WM 

capacity as well as for verbal WM capacity. 

Evidence regarding the figural WM task, 

remained inconclusive. Moderate evidence 

showed mathematicians and non-mathematicians 

being equally good in the VSL task. 
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Figure 1b displays BFs for the comparison of 

mathematicians with lower expertise to 

mathematicians with higher expertise in domain-

general abilities. There was anecdotal evidence that 

mathematicians with lower expertise were as good 

 ss mathematicians with higher expertise when it  

comes to working memory, patterning abilities as 

well as to visual statistical learning. All descriptive 

statistics of the domain-general abilities are 

presented in Table 3. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1a. & 1b. Bayesian t-tests analyses (1a) and Bayesian ANCOVAS with age as covariate which is added to the null 

model (1b), BF01 represents evidence for the null hypothesis (no difference between groups); BF10 represents evidence for 

the alternative hypothesis (difference between groups). BFs above the dashed line (BF > 1) indicate anecdotal evidence, BFs 

above the solid line (BF > 3) provide moderate evidence. BF not depicted entirely (BF > 10) provide strong evidence 

(Jeffreys et al., 1961). 
 

Table 3. Descriptive statistics for domain-general abilities in mathematicians (Math.) and in non-mathematicians (Non-math.) 

as well as in mathematicians with lower expertise (Math. LE) and in mathematicians with higher expertise (Math. HE)  

 

Variable 
Math. 

M (SD) 

Non-math. 

M (SD) 

Math. LE 

M (SD) 

Math. HE 

M (SD) 

Working Memory 

(number of items 

remembered 

correctly) 

Mean (0-39) 28.88 (5.30) 27.18 (5.06)  28.85 (5.07) 28.91 (5.65) 

Numerical (0-39) 31.31 (6.87) 30.66 (6.18) 31.27 (7.57) 31.34 (6.28) 

Verbal (0-39) 30.18 (5.89) 28.79 (6.88) 29.37 (6.12) 30.99 (5.68) 

Figural (0-39) 25.15 (8.22) 22.08 (6.70) 25.91 (6.91) 24.39 (9.46) 

Patterning 

(number of items 

solved correctly) 

Sum (0-30) 14.55 (3.60) 12.71 (3.60) 14.57 (3.06) 14.52 (4.16) 

Letter (0-6) 3.05 (1.21) 2.79 (1.28) 3.05 (1.12) 3.05 (1.32) 

Number (0-6) 2.88 (1.19) 2.38 (1.34) 2.95 (0.81) 2.81 (1.50) 

Rotation (0-6) 3.19 (1.07) 3.36 (1.19) 3.10 (1.04) 3.29 (1.10) 

Shape (0-6) 3.02 (1.24) 2.62 (0.96) 3.19 (1.33) 2.86 (1.15) 

Time (0-6) 2.41 (0.94) 1.57 (0.97) 2.29 (0.96) 2.52 (0.93) 

Visual Statistical 

Learning 
ACC 0.52 (0.11) 0.51 (0.12) 0.51 (0.11) 0.52 (0.12) 

Note. Abilities where the Bayes analyses show moderate or strong evidence for group differences are bolded.  

1b. Math. LE vs. Math. HE 1a. Math. vs. Non-math. 
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Domain-specific Abilities 

Bayesian statistics depicted in Figure 2a show 

evidence for or against group differences between 

mathematicians and non-mathematicians in 

domain-specific abilities. We observed strong 

evidence (BF10 = 185; δ = 0.81, 

95% CI [0.37, 1.26]) that mathematicians solved 

small multiplications more accurately than non-

mathematicians. The same finding was visible for 

the accuracy of large multiplications even tough 

evidence for this difference was only anecdotal 

(δ = 0.43, 95% CI [0.02, 0.86]). Both findings were 

as expected. In contrast, anecdotal evidence 

indicated that both mathematicians and non-

mathematicians solved small as well as large 

multiplications equally fast. There was moderate 

evidence for similar speed in the ANS, and 

anecdotal evidence for similarity in ACC and the 

Weber fraction (w), which was in line with our 

hypotheses. As expected, moderate evidence 

showed that mathematicians had a smaller NDE 

than non-mathematicians (δ = -0.49, 95% CI [-

0.92, -0.07]) in the symbolic numerical magnitude 

comparison task (cardinality). The results regarding 

response time and accuracy of the symbolic 

numerical magnitude comparison task were 

inconclusive. In the ordinality task, 

there was anecdotal evidence for group differences 

in ACC with mathematicians being more accurate 

(δ = 0.44, 95% CI [0.03, 0.87]) which was in line 

with our expectations. However, there was also 

anecdotal evidence for similarities in RT and in the 

RDE, which is in contradiction with our 

expectations. 

Figure 2b displays BFs for the comparison of 

mathematicians with lower expertise to 

mathematicians with higher expertise in domain-

specific abilities. Anecdotal evidence showed that 

mathematicians did not differ in ANS due to the 

amount of expertise they have. Regarding symbolic 

numerical magnitude comparison, anecdotal 

evidence indicated that mathematicians with higher 

expertise solved the task more accurately than 

mathematicians with lower expertise but not faster. 

In addition, the groups did not differ in their NDE. 

Similar to the ANS, mathematicians did not differ 

in ordinality as indicated by the anecdotal evidence. 

Regarding arithmetic abilities, anecdotal evidence 

suggested that mathematicians with lower and 

higher expertise solved small and large 

multiplications equally accurate, results regarding 

response time were inconclusive. Descriptive 

statistics of the domain-specific abilities are 

presented in Table 4.

 

 

 

Figure 2a. & 2b. Bayesian t-tests analyses (2a) and Bayesian ANCOVAS with age as covariate, which is added to the null model 

(2b), BF01 represents evidence for the null hypothesis (no difference between groups); BF10 represents evidence for the alternative 

hypothesis (difference between groups). BFs above the dashed line (BF > 1) indicate anecdotal evidence, BFs above the solid line (BF 

> 3) provide moderate evidence. BF not depicted entirely (BF > 10) provide strong evidence (Jeffreys et al., 1961). 

2a. Math. vs. Non-math. 2b. Math. LE vs. Math. HE 
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Table 4. Descriptive statistics for domain-general abilities in mathematicians (Math.) and in non-mathematicians (Non-math.) 

as well as in mathematicians with lower expertise (Math. LE) and in mathematicians with higher expertise (Math. HE)  

 

Variable 
Math 

M (SD) 

Non-Math 

M (SD) 

Math. LE 

M (SD) 

Math. HE 

M (SD) 

Approximate 

Number System 

ACC 0.87 (0.04) 0.86 (0.05) 0.87 (0.04) 0.87 (0.04) 

RT (in seconds) 0.91 (0.20) 0.93 (0.30) 0.91 (0.24) 0.91 (0.14) 

w 0.18 (0.05) 0.19 (0.07) 0.18 (0.05) 0.17 (0.05) 

Symbolic 

numerical 

magnitude 

comparison task 

(Cardinality) 

ACC 0.98 (0.02) 0.97 (0.02) 0.98 (0.01) 0.99 (0.01) 

RT (in seconds) 0.49 (0.08) 0.45 (0.12) 0.46 (0.05) 0.52 (0.09) 

NDE 0.11 (0.05) 0.14 (0.06) 0.11 (0.04) 0.10 (0.06) 

Ordinality 

ACC 0.90 (0.07) 0.85 (0.10) 0.89 (0.05) 0.90 (0.08) 

RT (in seconds) 0.88 (0.14) 0.84 (0.18) 0.84 (0.11) 0.92 (0.15) 

RDE 0.01 (0.07) -0.01 (0.10) 0.00 (0.07) 0.02 (0.07) 

Arithmetic 

(Multiplication) 

Small ACC 0.99 (0.02) 0.96 (0.04) 0.98 (0.02) 0.99 (0.02) 

Small RT (in 

seconds) 
1.62 (1.12) 1.96 (0.89) 1.32 (0.73) 1.92 (1.36) 

Large ACC 0.93 (0.07) 0.90 (0.07) 0.92 (0.08) 0.94 (0.05) 

Large RT (in 

seconds) 
5.88 (3.35) 6.53 (2.82) 5.32 (1.97) 6.44 (4.30) 

 

Note. Abilities where the Bayes analyses show moderate or strong evidence for group differences are bolded. 

 
Domain-general Personality Traits and 
Domain-Specific Attitudes 

In the domain-general personality Bayesian 

analyses, depicted in Figure 3a, we observed 

strong evidence for differences in openness 

(BF10 = 171; δ = -0.81, 95% CI [-1.26, -0.36]) 

with non-mathematicians showing higher 

openness than mathematicians did. Regarding 

the other Big Five personality traits 

conscientiousness, extraversion, agreeableness 

as well as neuroticism, and need for cognition, 

the BFs provided moderate to anecdotal 

evidence for similarities. Thus, except for 

openness, evidence suggested that 

mathematicians and non-mathematicians were 

rather similar in domain-general personality 

traits. Regarding NFC, results were indecisive.  

We found strong evidence for group 

differences in all domain-specific attitudes. As 

expected, mathematicians (compared to non-

mathematicians) showed lower math anxiety 

(BF10 = 309 915; δ = -1.26, 95% CI [-1.74 -0.79]), 

enjoyed mathematics more (BF10 = 4.31E+8; 

δ = 1.65, 95% CI [1.14, 2.16]), were more 

confident in mathematics (BF10 = 716 894; 

δ = 1.31, 95% CI [0.83, 1.79]), had a higher 

motivation in mathematics (BF10 = 2.37E+9; 

δ =  1.73, 95% CI [1.22, 2.25]), and self-evaluated 

their competencies in mathematics better 

(BF10 = 611; δ = 0.89, 95% CI [0.44, 1.35]).  
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Figure 3a. & 3b. Bayesian t-tests analyses (3a) and Bayesian ANCOVAS with age as covariate, which is added to the null model (3b), 

BF01 represents evidence for the null hypothesis (no difference between groups); BF10 represents evidence for the alternative 

hypothesis (difference between groups). BFs above the dashed line (BF > 1) indicate anecdotal evidence, BFs above the solid line (BF 

> 3) provide moderate evidence. BF not depicted entirely (BF > 10) provide strong evidence (Jeffreys et al., 1961). 

 

Figure 3b displays BFs for the comparison of 

mathematicians with lower expertise to 

mathematicians with higher expertise in domain-

general as well as domain-specific personality 

aspects. Mathematicians with higher expertise were 

more motivated in mathematics compared to 

mathematicians with low expertise, which was 

shown with moderate evidence (BF10 = 3.17). In 

contrast, mathematicians with lower expertise did 

not differ from mathematicians with higher 

expertise in the other domain-specific attitudes,  

even though evidence was only anecdotal. They 

 

displayed a similar amount of math anxiety, 

enjoyed math similarly, were comparably confident 

in mathematics and evaluated their competence in 

mathematics similarly. Regarding domain-general 

personality traits anecdotal evidence showed that 

the Big Five personality traits did not differ 

depending on amount of mathematical expertise. 

Results regarding need for cognition were again 

indecisive. Descriptive statistics of the domain-

general personality traits and domain-specific 

personality facets are presented in Table 5. 

 

Table 5. Descriptive statistics for domain-general personality traits and domain-specific personality facets in mathematicians 

(Math.) and in non-mathematicians (Non-math.) as well as in mathematicians with lower expertise (Math. LE) and in 

mathematicians with higher expertise (Math. HE)  

 

Variable 
Math. 

M (SD) 

Non-math. 

M (SD) 

Math. LE 

M (SD) 

Math. HE 

M (SD) 

Domain-general personality traits 

Big Five  

(Likert 1-5) 

Openness 3.53 (0.71) 4.11 (0.61) 3.38 (0.65) 3.68 (0.74) 

Conscientiousness 3.85 (0.59) 4.03 (0.56) 3.68 (0.62) 4.02 (0.51) 

Extraversion 3.29 (0.62) 3.36 (0.63) 3.36 (0.66) 3.21 (0.58) 

Agreeableness 3.80 (0.72) 3.87 (0.66) 3.64 (0.74) 3.95 (0.69) 

Neuroticism 2.27 (0.63) 2.50 (0.76) 2.27 (0.64) 2.26 (0.62) 

Need for Cognition 

 (Likert 1-7) 
5.33 (0.56) 5.06 (0.78) 5.15 (0.53) 5.51 (0.54) 

3a. Math. LE vs. Math. HE 3b. Math. LE vs. Math. HE 
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Variable 
Math. 

M (SD) 

Non-math. 

M (SD) 

Math. LE 

M (SD) 

Math. HE 

M (SD) 

Domain-specific personality facets  

Math Anxiety 

(Likert 1-5) 
1.51 (0.41) 2.33 (0.77) 1.53 (0.44) 1.49 (0.39) 

Enjoyment of mathematics 

(Likert 1-5) 
4.55 (0.55) 2.98 (1.18) 4.43 (0.60) 4.67 (0.48) 

Confidence in mathematics 

(Likert 1-5) 
3.88 (0.74) 2.71 (0.94) 3.86 (0.57) 3.91 (0.89) 

Motivation in mathematics 

(Likert 1-5) 
4.43 (0.59) 2.81 (1.13) 4.24 (0.63) 4.62 (0.50) 

Self-evaluated math competencies 

(Likert 1-6) 
4.69 (0.54) 4.12 (0.64) 4.64 (0.33) 4.74 (0.69) 

Note. Personality traits where the Bayes analyses show moderate or strong evidence for group differences are bolded. 

 
Discussion 

The aim of the current study was to 

systematically investigate the cognitive abilities 

and personality traits related to mathematical 

expertise while controlling for intelligence. 

Mathematical expertise was defined in terms of 

formal education. We compared mathematics 

students as well as faculty members at 

mathematical institutes to individuals of equal 

academic standing from domains not related to 

mathematics. Both groups were matched for 

general intelligence to avoid the confounding 

influence of intelligence on domain-general as 

well as domain-specific abilities. In addition, we 

separately looked at the specific influence of 

mathematical expertise by comparing 

mathematicians of lower (students) and higher 

(faculty members) expertise. All analyses were 

done with Bayes statistics to provide not only 

evidence for differences between groups, as is 

done with traditional frequentist analyses, but 

also evidence for similarities. 
 

Domain-general Cognitive Abilities 

Intelligence is an important predictor for 

educational achievement, especially in the 

domain of mathematics (Roth et al., 2015). This 

relationship between intelligence and 

mathematical achievement is a well-established 

finding and also present in individuals with high 

mathematical expertise. In previous studies, it 

was found that mathematicians had a higher IQ 

than individuals of equal academic standing 

from other fields of expertise (Cipora et al., 

2016; Popescu et al., 2019). We replicated this 

finding in our original sample of 105 

participants (see 2.1. Participants). Since 

intelligence was correlated with several other 

domain-general as well as domain-specific 

cognitive abilities in the original full sample, but 

also in our intelligence matched sample (see 

Table A1), it was important to control for this 

confounding variable when examining 

differences between expertise groups. Still, it 

must be mentioned, that by matching for general 

intelligence we probably also have screened out 

useful variance. Nonetheless, as our question 

was whether factors above intelligence explain 

differences between mathematicians and non-

mathematicians, this question can only be 

addressed by matching mathematicians and non-

mathematicians in general intelligence.  

After controlling for intelligence, we 

observed strong evidence for a difference 

between mathematicians and non-

mathematicians in only one task, namely in the 

patterning task in the domain of time. While 

there are no studies on patterning abilities in 

adults, let alone in mathematical experts, 

evidence from studies in children (e.g., MacKay 

& De Smedt, 2019; Zippert et al., 2019) 

suggested that mathematicians and non-

mathematicians may also differ in their 

patterning abilities. Therefore, the above-

mentioned finding was in line with our 

hypothesis. However, contrary to our hypothesis 

that mathematicians have better pattering 

abilities, mathematicians performed equally 
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well as non-mathematicians in the other four 

patterning domains (letter, number, rotation, and 

shapes). However, the evidence in favor of 

similar performance in these domains was only 

anecdotal for letter, number, and shape and 

moderate in the domain of rotation. This 

domain-specificity could be due to the task 

demand. Patterning in the domain time was the 

most difficult task with on average two out of 

six items solved, compared to an average of 

three items in the other domains. This difficulty 

may have arisen from the requirement (a) to 

transform the analogue clock into a digital 

format, (b) to do calculations in a duodecimal 

(12) numeral system for hours and a 

sexagesimal (60) numeral system for minutes 

(De Vlieger, 2013) and (c) to transform the 

results back from digital to analogue. 

Mathematicians can be expected to have more 

experience using different numeral systems and 

also have better calculation competencies (as 

also observed in our data), resulting in an 

advantage in solving this complex patterning 

task. This explanation was corroborated by our 

correlational results (see Table A1). The number 

of items solved in the domain time showed a 

positive correlation with mathematical 

achievement (r = .42) and numerical 

intelligence (r = .42). Those correlations were 

the highest out of all patterning domains, even 

higher than the correlations between the number 

of items solved in the domain number and 

mathematical achievement (r = .32) as well as 

numerical intelligence (r = .36). Thus, these 

results suggest that mathematicians do not have 

better patterning abilities per se, but rather have 

an advantage in solving patterns with high 

mathematical demands.  

For working memory, there was stronger 

evidence for similarities between 

mathematicians and non-mathematicians than 

for differences. These findings stand in contrast 

to previous results and our hypothesis that 

mathematicians have a higher WM capacity 

than non-mathematicians. Moderate evidence 

for similarities was observed in the numerical 

WM task, and anecdotal evidence for the verbal 

and general WM score. Only in the figural WM 

task, there was anecdotal evidence for 

mathematicians having a higher capacity 

(BF10 = 1.05). However, since evidence for 

similarities was almost equally strong 

(BF01 = 0.96), we concluded that the evidence 

was inconclusive. WM was found to be not only 

related to mathematics in the general population 

(Friso-van den Bos et al., 2013; Peng et al., 

2016; Raghubar et al., 2010) but also impaired 

in children with difficulties in mathematics 

(Passolunghi & Siegel, 2004; Menon, 2016). 

Further, mathematically gifted children and 

adolescents expressed better WM abilities 

compared to a control group (Leikin et al., 2013; 

Swanson, 2006), and mathematicians had a 

higher WM capacity than non-mathematicians 

(Popescu et al., 2019). A plausible explanation 

for our diverging results lies in the matching for 

general intelligence. Working memory capacity 

and general intelligence have been found to be 

highly correlated constructs (Ackerman et al., 

2005; Oberauer et al., 2005), which was also 

evident in our data (r = .48, see Table A1). One 

assumption why this relationship exists is the 

view that both general intelligence as well as 

WM partly rely on the same cognitive 

processes. Reasoning is needed to successfully 

perform in intelligence as well as in WM tasks 

(Diamond, 2013; Jäger, 1984). Next to 

additional processing requirements, WM tasks 

require short-term memory, and short-term 

memory is frequently included in the 

measurement of general intelligence (Colom et 

al., 2008). This was also the case in our study 

where the BIS-T included three tasks measuring 

the operational ability “memory”. Those shared 

processes seem to be responsible for the high 

correlation between general intelligence and 

WM. If intelligence is controlled for, much of 

the variance in WM is removed and WM does 

not remain a unique predictor. Evidence for this 

assumption comes from Popescu et al. (2019) as 

well as to some extent from our own data. 

Popescu et al. (2019) found mathematicians to 

have a higher WM capacity (measured with a 

backward digit-span task) compared to non-

mathematicians. But mathematicians also had a 

higher performance IQ, which was not 

considered when discussing the difference in 

WM. When analyzing unmatched groups in our 



  
Meier et al. (2021)                                                                                                                        Cognitive and Personality Traits of Math Experts 

https://www.journalofexpertise.org                                                                                                                                                                      101 
Journal of Expertise / March 2021 / vol. 4, no. 1 

sample, we found moderate evidence towards 

mathematicians having a higher figural WM 

capacity than non-mathematicians. This 

supported our notion, that the divergent findings 

regarding WM capacities in previous studies can 

be explained by the control for general 

intelligence.  

Since mathematics inherently involves the 

identification of predictable sequences in 

objects and numbers (Resnik, 1997), we also 

investigated potential group differences in 

visual statistical learning (Bogaerts et al., 2020). 

Recent evidence suggested that VSL may not 

only be related to language and reading abilities 

(Schmalz et al., 2019; Siegelman, 2020) but also 

to mathematics (Levy et al., 2020; Zhao & Yu, 

2016). However, this was not the case in our 

study. On the one hand, moderate evidence 

showed that mathematicians performed 

similarly to non-mathematicians in the VSL 

task. On the other hand, performance in the VSL 

task was neither correlated with measurements 

of numerical intelligence and mathematical 

achievement nor with arithmetic as well as with 

basic numerical abilities. When the correlations 

were calculated for mathematicians and non-

mathematicians separately, visual statistical 

learning correlated positively with general 

intelligence (r = .45) and mean working 

memory capacity (r = .38) in the non-

mathematicians. However, these results must be 

interpreted very carefully due to methodological 

issues. Additional to the questionable reliability, 

only 7% of all individuals showed above chance 

performance in this task, showing a floor effect. 

In the study by Siegelman, Bogaerts and Frost 

(2017), 60% performed above this threshold and 

even though we used the exact same task, our 

reliability measure was significantly worse. 

Therefore, our VSL task may not have provided 

reliable information about the statistical learning 

abilities of the majority of our sample. A 

plausible explanation for this low performance 

could be that the VSL task was the last task in 

the test session. In contrast to previous studies, 

participants already had spent over two hours 

completing demanding cognitive tasks before 

engaging in the VSL task. Even though the VSL 

is designed to work without overt attention, 

there is still the possibility that participants were 

cognitively too exhausted to detect the 

transitional probabilities embedded in the 

sequential stream of meaningless shapes. 
 

Domain-specific Cognitive Abilities 

The strongest evidence for a group difference in 

domain-specific cognitive abilities emerged in 

arithmetic (multiplication tasks). In line with 

our hypothesis, we observed strong evidence 

(BF10 = 185) that mathematicians were more 

accurate in solving small multiplications. 

However, anecdotal evidence suggested that 

both groups solved the small problems at the 

same speed. There is broad consensus that the 

dominant process for solving single-digit 

multiplications is the direct retrieval of the 

solution from an arithmetic fact network in long 

term memory (Ashcraft, 1992; Campbell & Epp, 

2005). This suggests that mathematicians 

(compared to non-mathematicians) have a better 

arithmetic fact network in terms of stronger 

associative strengths between problems and the 

respective answers. Since the ability to retrieve 

arithmetic facts constitutes a prerequisite for the 

learning of more complex mathematical 

knowledge (De Smedt, 2016), this finding 

seems plausible. In addition, as expected, 

mathematicians showed better performance in 

the procedural arithmetic task as reflected in 

anecdotal evidence for group differences in 

accuracy of the large (two-digit) multiplications. 

Those results are consistent with other studies 

on mathematicians that found mathematicians 

having a better procedural knowledge (Dowker, 

1992; Dowker et al., 1996; Popescu et al., 

2019).  

Our data supported the hypothesis that 

mathematicians did not have a better ANS. 

While ANS was found to be positively related to 

mathematical competence in the general 

population (Schneider et al., 2017) and in highly 

mathematical gifted adolescents (Wang et al., 

2017), the studies on ANS in mathematicians 

implicated that ANS is not related to 

mathematics at this level of mathematical 

expertise (Castronovo & Göbel, 2012; Popescu 

et al., 2019). Moderate evidence proved that 

mathematicians performed similarly to non-
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mathematicians in response time and accuracy 

in an ANS task. Even though the evidence for 

group similarities in ANS acuity (w) was only 

anecdotal, it was three times larger than 

evidence for group differences. Our findings 

were similar to previous findings in 

mathematical experts, even though we used a 

conceptual slightly different ANS task and task 

demands therefore differed to some extent. 

While we presented two dot arrays 

simultaneously, Castronovo and Göbel (2012) 

and Popescu et al. (2019) sequentially compared 

a target dot array to a reference dot array 

leading to a higher WM demand compared to 

the simultaneous presentation (Price et al., 

2012). Still, our study corroborated that there 

are no differences in ANS after a certain level of 

mathematical expertise is achieved.  

We expected mathematicians to be better at 

symbolic numerical magnitude processing as 

indicated by a higher accuracy and a smaller 

NDE. Supporting our hypothesis, moderate 

evidence showed that mathematicians had a 

considerably smaller NDE in the symbolic 

magnitude comparison task compared to non-

mathematicians This indicates that 

mathematicians have a more accurate mental 

representation of symbolic numbers and is 

consistent with results found in the general 

population (e.g., De Smedt et al., 2009; 

Schneider et al., 2017). However, this 

contradicts the results from studies focusing on 

mathematical experts using a symbolic 

numerical magnitude comparison task. Even 

though both Castronovo and Göbel (2012) as 

well as Hohol et al. (2020) found a robust NDE, 

mathematicians had an equal sized NDE as non-

mathematicians. One possible explanation for 

this diverging finding could be the fact that both 

aforementioned studies compared target 

numbers to a fixed standard while our 

participants had to compare two simultaneously 

presented numbers. A recent study raised doubt 

if the comparison with a fixed standard really 

taps into the same cognitive processes as 

comparing two different numbers. Maloney et 

al. (2019) concluded that especially the NDE is 

not equivalent in simultaneous presentation 

compared to comparison to a standard. 

However, one constraint when interpreting the 

NDE is the inadequate reliability. The NDE is a 

difference score, and these generally produce 

low reliabilities as the correlation between the 

component scores subsume the majority of their 

systematic variance (Draheim et al., 2019). In 

contrast, when using a different task to measure 

the mental representation of symbolic numbers, 

mathematician do indeed seem to have a more 

accurate but also a more flexible mental spatial 

representation of symbolic numbers. In a study 

by Sella et al. (2016) mathematicians and 

academically matched individuals from 

humanities had to position diverse numbers 

spatially on a number line. Mathematicians were 

more accurate at spatial mapping positive, but 

not negative numbers and the performance in 

this basic numerical skill could predict group 

membership. The higher flexibility of mental 

spatial representation of symbolic numbers is 

shown by Cipora et al. (2016) who provided 

evidence that mathematicians did not reveal a 

Spatial-Numerical Association of Response 

Codes. While participants typically respond 

faster to smaller magnitudes with the left hand, 

and to larger magnitudes with the right hand, 

this was not the case in mathematicians. For 

accuracy and response time no reliable evidence 

was found, neither for group differences nor for 

similarities. These findings contradict, at least to 

some extent, the results by Castronovo and 

Göbel (2012) who, on the one hand, did not find 

differences in response time between 

mathematicians and a control group but, on the 

other hand, found a higher accuracy of 

mathematicians. However, while Castronovo 

and Göbel (2012) used a two-digit numerical 

magnitude comparison task we, as well as 

Hohol et al. (2020), used single-digits number 

comparison which were significantly easier than 

two-digit number comparison (Mdn = 0.95, 

SD = 0.03). Both Hohol and colleagues (overall 

accuracy 96.9%) as well as our study showed a 

very high accuracy (M = 0.98, SD = 0.02) 

implicating a ceiling effect, which could be the 

reason for the indecisive results in regard to the 

accuracy. While the reliability for response time 

alone was excellent, another concern emerges 

with response times in general, namely that they 
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are sensitive to speed-accuracy tradeoffs that 

may differ across groups of individuals 

(Draheim et al., 2019). While mathematicians 

seemed to reduce speed in favor of a higher 

accuracy in the symbolic numerical magnitude 

processing test (as indicated by a positive 

correlation of .55 between RT and ACC), non-

mathematicians showed no correlation between 

response time and accuracy. Despite the 

limitations, deduced from the results that 

mathematicians exhibited a smaller NDE but 

similar response times as non-mathematicians, 

we presume the following. The differences in 

the NDE did not stem from the use of different 

response strategies but rather indicate that 

mathematicians haven a more accurate mental 

representation of symbolic numbers, probably 

caused by their greater experience with the 

symbolic number system.  

Our study was the first to investigate 

ordinality processing within mathematical 

experts. Results in the general population 

revealed that a better overall performance 

(response time and accuracy combined) as well 

as a smaller RDE was associated with higher 

mathematical competence (e.g., Goffin & 

Ansari, 2016; Vogel et al., 2017). Additionally, 

a study comparing high math-ability children to 

a control group found a group difference in a 

number order task in favor of the high-achieving 

(Bakker et al., 2019). Therefore, we 

hypothesized mathematicians to be faster, more 

accurate and to have a smaller RDE than non-

mathematicians in an ordinality processing task. 

However, this was only the case in accuracy and 

only with anecdotal evidence. Regarding the 

response times and the RDE anecdotal evidence 

showed that mathematicians and non-

mathematicians performed similar. 

Mathematicians were more accurate compared 

to non-mathematicians in judging if three 

single-digit numbers were ordered or not 

although they did not need more time for those 

judgements. This heightened effectiveness in 

making ordinal judgments seemed to be related 

to better mathematical competences. A higher 

accuracy in the ordinality processing task was 

positively associated with a higher numerical 

intelligence (r = .49) as well as with a higher 

mathematical achievement score (r = .31). The 

response time in this task, which was similar for 

mathematicians and non-mathematicians, 

however, did not correlate with numerical 

intelligence and mathematical achievement (see 

Table A1). While the results regarding the 

overall performance measures were not 

surprising, we did not expect mathematicians to 

have a comparable RDE to non-mathematicians. 

This was the case because this measure has been 

assumed to reflect the automatic retrieval and 

access to number sequences, which we 

hypothesized to be better in mathematicians. 

Further, the RDE did not reveal a significant 

association with any of the other tasks 

(regardless of within the whole sample or within 

mathematicians and non-mathematicians 

separately), which was unexpected too. An 

explanation for the missing correlations could 

be the insufficient reliability, which is caused by 

the RDE being a difference scores (Draheim et 

al., 2019), as well as the low numbers of trials 

(n = 44) used to calculate the RDE. Another 

explanation for these results could be provided 

by a closer look at the descriptive statistics and 

the distribution plots. These revealed the RDE 

to be a rather indominant psychological 

phenomenon, which is in contrast to a dominant 

phenomenon, whose characteristic is that it is 

present in virtually all individuals and no 

individual shows a divergent effect (Rouder & 

Haaf, 2018). Vogel et al. (2021) showed that 

while the NDE is consistent and shows mostly 

quantitative differences between individuals, the 

RDE shows qualitative differences. This 

indicates that individuals may use different 

qualitative processing strategies while solving 

the ordinality task. We looked at the proportion 

of individuals who behaved in a manner 

consistent with the theoretical explanation, i.e., 

participants who showed the expected pattern of 

the RDE (meanRT2;3 > meanRT1). The 

percentage of participants whose responses 

matched this pattern are labeled percent correct 

classifications (after Grice et al., 2020) and 

percent correct classification for the RDE was 

45.24%. Less than half of the participants were 

consistent with the ordinal hypothesis and 

showed a typical RDE where number triplets 
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with distance one were judged faster than 

triplets with the distance two and three. 24.86% 

were opposite of the ordinal hypothesis and 

showed a canonical distance effect, in which 

number triplets with distance two and three are 

judged the fastest. 11.90% were inconsistent 

with the ordinal hypothesis, meaning they who 

showed no distance effect at all or only differed 

by 10 milliseconds. Still, mathematicians and 

non-mathematicians were equally represented in 

all three groups.  

Taken together, our results revealed that 

mathematicians had rather similar ability 

profiles as non-mathematicians after differences 

in intelligence have been taken into account. 

Moderate evidence for similarity was found in 

numerical WM, patterning abilities in the 

domain rotation, in the VSL task, and in ANS 

response time. In contrast, strong evidence for 

differences emerged in the domain time of the 

patterning task, in the accuracy of solving 

single-digit multiplications, and moderate 

evidence for differences emerged in the NDE in 

a symbolic numerical magnitude comparison 

task. Thus, mathematicians had the same 

domain-general abilities as non-mathematicians, 

apart from having better patterning abilities in 

the domain time, which required specific 

mathematical competencies. Further, 

mathematicians were not per se better at all 

domain-specific tasks; however, they did have a 

more accurate mental representation of 

symbolic numbers and better arithmetic fact 

knowledge.  
 

Domain-general Personality Traits and 
Domain-specific Personality Facets 

There are many stereotypes on “how 

mathematicians are,” a few of them being that 

mathematicians are rather introverted (Bruss, 

2011) as well as lonely, socially awkward, and 

boring (Piatek-Jimenez et al., 2020). However, 

there is not much psychological research on the 

domain-general personality traits of 

mathematicians. Existing studies either 

biographically described eminent 

mathematicians (e.g., James & Ioan, 2002) or 

mathematicians from a different socio-cultural 

background (e.g., Chinese participants, Hu & 

Gong, 1990) than is studied here. Therefore, we 

perceived the literature as too sparse to derive 

specific hypotheses. One thing that must be kept 

in mind when integrating the results into the 

existing literature is that a generalization of the 

results can only be done carefully to similar 

socio-cultural settings.  

In the present study, we found moderate 

evidence that mathematicians were less open to 

experiences than non-mathematicians, but rather 

similar in extraversion and agreeableness. In 

conscientiousness and neuroticism, groups were 

also rather similar, albeit evidence was only 

anecdotal. In previous studies, Clariana (2013) 

found a science group, which included students 

of mathematics, to score higher on openness 

than students from educational sciences. We 

assume that our findings are not a result of 

mathematicians being less open to experiences 

but of non-mathematicians being more open. 

According to the manual of the Big Five 

personality test we administered (Körner et al., 

2008) the mean score for openness of a large 

population-based sample (N = 2,508, 18-92 

years) is 2.04 with the scale ranging from 1 to 5. 

Our non-mathematicians displayed a mean score 

of 4.11 while the mathematicians had a mean 

openness score of 3.53. However, educational 

level significantly influences openness to 

experiences and individuals with a higher level 

of education tend to be more open to 

experiences (Körner et al., 2008). Compared to 

the population-based sample, our participants 

had a higher education, explaining why scores 

of both groups were significantly higher than 

the mean score derived from the manual. In 

addition, we assume that the specific wording of 

the items in relation with the fields of expertise 

of the non-mathematicians may have 

contributed to the observed group difference. 

Out of the six items of the scale four items 

covered domains that were directly related to 

domains our participants were from (including 

philosophy, history of art, archeology linguistic 

sciences, musicology as well as theology). The 

respective items were “I’m bored by 

philosophical discussions,” “I’m excited by 

motives, which I find in arts and in nature,” 

“I’m not impressed by poetry,” and “While 
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reading literature or looking at a painting, I 

sometimes feel a shiver of excitement.” In any 

case, the results that mathematicians were 

similar to non-mathematicians in extraversion, 

agreeableness, and neuroticism speak against 

the prejudices that mathematicians are socially 

awkward introverts. We hypothesized that 

mathematicians were also comparable to non-

mathematicians in NFC, which is the tendency 

to engage in end enjoy effortful cognitive 

processes in general. However, evidence for this 

assumption was indecisive leading to no clear 

conclusion. Still, NFC does not seem to be a 

specific trait of mathematicians but rather a 

characteristic of individuals attending tertiary 

education, regardless of the domain. 

While mathematicians and non-

mathematicians are rather similar in domain-

general personality traits, a different picture 

emerged in domain-specific personality facets. 

With strong evidence, mathematicians displayed 

lower math anxiety, showed a more positive 

attitude towards mathematics, and evaluated 

their math competencies better than non-

mathematicians did. This supported our 

hypotheses, which we postulated based on 

studies in the general population finding the 

same pattern for individuals with higher 

mathematical achievement. Mathematicians are 

unlikely to suffer from significant math anxiety, 

and because of their experience in the field of 

mathematics they display a high confidence in 

doing mathematics and a higher confidence is 

associated with lower anxiety (Dowker, 2019) 

which is also visible in our data (r = -.65). 

Further, individuals with a highly negative 

attitude towards mathematics are unlikely to 

study mathematics and become professional 

mathematicians in the first place. Finally, 

mathematicians are known to show positive 

emotional reactions to mathematics (Dowker, 

2019), which is in line with our finding that 

mathematics enjoying mathematics more, are 

more confident and more motivated to do 

mathematics than non-mathematicians. We 

suppose that these differences in domain-

specific personality facets may already have 

been visible before mathematicians chose 

mathematics as their career, otherwise they 

would have engaged in a different domain. 

Nonetheless, not all individuals displaying this 

positive attitude towards mathematics will 

become mathematicians leaving the question 

open what the reasons are to pursue a career in 

mathematics. However, to answer this question, 

a longitudinal study would be needed. 

In sum, mathematicians had a rather similar 

general personality profile as non-

mathematicians, except from being less open to 

experiences. However, they did have a more 

positive attitude towards mathematics which is 

not surprising considering that they chose to 

become mathematicians. 
 

Mathematicians with Lower Expertise vs. 

Mathematicians with Higher Expertise 

Our study contributes to the understanding of 

the specific influence of mathematical expertise 

by not only including students of mathematics 

but also faculty members of mathematics and by 

investigating similarities and differences 

between those two expertise groups. We 

observed that mathematicians with lower 

expertise were equally intelligent as 

mathematicians with higher expertise and 

scored comparably on the mathematical 

achievement test. However, as the M-PA was 

constructed to measure mathematical 

achievement at the level of secondary education, 

we did not expect this test to differentiate 

between groups. Mathematicians with higher 

expertise had spent approximately four times as 

many hours with mathematics in their life and 

had been in the field of mathematics for 14 

years more than mathematicians with lower 

expertise had. This advance in expertise caused 

mathematicians with higher expertise being 

significantly older which is why we decided to 

include age as a covariate to separate between 

age-related and expertise-related group 

differences. 

Beforehand it must be emphasized that 

evidence for similarities was in almost all 

variables only anecdotal. Thus, we do not have 

substantial evidence and our interpretations 

should be regarded cautiously. Mathematicians 

had similar domain-general abilities regardless 

of the amount of expertise. WM capacity was 
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comparable in mathematicians with lower and 

higher expertise indicating that additional 

experience in mathematics is not related to 

differences in WM capacity. WM capacity is 

typically found to decrease with age (Bopp & 

Verhaeghen, 2018; Fiore et al., 2012; 

Jaroslawska & Rhodes, 2019), which was not 

visible in our data. However, in contrast to the 

studies on age-related decrease in WM, our 

group of “older individuals” was relatively 

young (24-63 years, M = 36.24, SD = 13.65) 

compared to the “older individuals” in the 

above-mentioned studies. Further, all our 

participants were currently employed in jobs 

with high cognitive demands. Taken into 

account that the level of education has a positive 

impact on WM capacity and mitigates age-

related declines in WM (Archer et al., 2018; 

Pliatsikas et al., 2019) this might explain why 

age also did not correlate with WM capacity in 

our data (see Table A1). While mathematicians 

outperformed non-mathematicians in the 

patterning domain time, presumably due to its 

high mathematical demand, no differences 

within mathematicians were found, neither in 

the domain time, nor in the other patterning 

domains or in general patterning. Further, data 

showed evidence that mathematicians with 

lower expertise had similar performance as 

mathematicians with higher expertise in a VSL 

task. However, due to the methodological issues 

already discussed in the section on domain-

general cognitive abilities, we could not make a 

valid conclusion regarding VSL and the impact 

of varying amount of mathematical expertise. 

Mathematicians with lower expertise 

displayed for the most part the same domain-

specific abilities as mathematicians with lower 

expertise. ANS acuity was neither influenced by 

the amount of mathematical expertise nor by 

age. Age did not correlate with ANS in our 

sample, which is in contrast to the general 

population, where individuals attain the best 

ANS acuity at approximately 30 years and ANS 

precision shows a sustained age-relate decline 

from 30 to 85 years of age (Halberda et al., 

2012). However, only a small number of 

mathematicians were older than 30 and those 

were highly educated, which may counteract 

against any age-related declines in ANS. The 

only domain-specific-ability where 

mathematicians with lower expertise differed 

from individuals with higher expertise was 

symbolic numerical magnitude comparison. 

Mathematicians with lower expertise were less 

accurate in comparing two single-digit numbers 

according to their numerical magnitude than 

mathematicians with higher expertise were. This 

was visible even when age was included as a 

covariate into the model, although the evidence 

for between group differences significantly 

decreased. However, the solution rate was 

almost perfect, 98% for mathematicians with 

lower expertise and 99% for mathematicians 

with higher expertise, indicating a ceiling effect 

(e.g., Austin & Brunner, 2003; Hessling et al., 

2004; Schweizer et al., 2019). Therefore, it is 

important to not attach too much importance to 

this finding. Mathematicians with higher 

expertise were equally fast in solving the 

symbolic numerical magnitude comparison task 

as mathematicians with lower expertise when 

age was included into the model. In contrast, 

mathematicians with higher expertise were 

slower than mathematicians with lower 

expertise when age was not considered. This 

implicates that there was an age-related decline 

in the processing speed of comparing two 

single-digit numbers according to their 

numerical magnitude, which also was 

corroborated by a positive correlation between 

age and response time (r = .57). While 

mathematicians had a more accurate mental 

representation of symbolic numbers than non-

mathematicians, implicated by a smaller NDE, 

there were no differences in NDE between 

mathematicians of lower and higher expertise. 

Likewise, while mathematicians and non-

mathematicians could be differentiated by 

accuracy in an ordinality processing task, 

mathematicians displayed comparable 

numerical order processing abilities regardless 

of whether they had comparably low or high 

mathematical expertise. A similar picture 

emerged for arithmetic abilities, which did not 

differ between mathematicians of lower and 

higher expertise.  
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The result pattern that mathematicians with 

lower expertise were very similar to 

mathematicians with higher expertise continued 

when looking at the personality traits. Neither in 

the Big Five nor in NFC the evidence for group 

differences was strong enough to assume that 

mathematicians with different degrees of 

mathematical expertise differed from one 

another. This was similar in the domain-specific 

personality facets, although there was one 

exception, namely motivation in mathematics, 

in which the evidence for group differences was 

moderate. Mathematicians with higher expertise 

stated that they were more motivated in the field 

of mathematics than mathematicians with lower 

expertise. All mathematicians with higher 

expertise were faculty members doing 

mathematical research. To pursue a scientific 

career in academia a lot of effort and therefore 

motivation is needed; therefore, individuals who 

work as a scientific mathematician in academia 

should be highly motivated to do mathematics, 

which was shown in our data. In contrast, 

mathematicians with lower expertise, were 

bachelor or master students. Of course, not all of 

them will finish their studies, let alone obtain a 

Ph.D. and pursue a career in academia; a few of 

them will probably drop out, which could be 

due to a lack of motivation. Those diverse 

motivational characteristics of the 

mathematicians with lower expertise could 

account for the on-average lower motivation to 

do mathematics compared to the 

mathematicians with higher expertise. 

Taken together, the variables we 

investigated did not differ depending on the 

amount of mathematical experience. This 

suggests that after reaching a certain level of 

mathematical expertise, additional mathematical 

experience seems to become irrelevant. 

Mathematicians with lower expertise were 

similar to mathematicians with higher expertise 

in domain-general and domain-specific abilities 

but also in personality traits. The only exception 

was that faculty members of the institute of 

mathematics were more motivated to do 

mathematics than students of mathematics were. 
 

 

Limitations and Future Directions 

The present findings should be interpreted in 

light of the limitations of this study. First, a 

special focus must be put on our control group. 

We decided to recruit our control group from 

subjects in which mathematical topics are not 

part of the curriculum (e.g., philosophy, history, 

law, medicine, music) similar to Popescu et al., 

(2019). This was also the reason why we 

decided to exclude individuals from the field of 

psychology because they receive at least some 

mathematical education (i.e., statistics) at the 

university (in contrast to Castronovo & Göbel, 

2012, who compared students of mathematics to 

students of psychology). As it was beyond the 

scope of this study, we did not include a third 

group of individuals who are not 

mathematicians but who use advanced math in 

their everyday professional work (e.g., 

accounting, telecommunication, chemistry, as 

was done by Cipora et al., 2016; Dowker et al., 

1996; Hohol et al., 2020). Therefore, we are not 

able to say whether the observed differences 

(higher patterning abilities in the domain of time, 

more accurate mental representation of symbolic 

numbers, better arithmetic fact knowledge, lower 

openness to experiences, more positive attitude 

towards mathematics of mathematicians) emerged 

because we compared two rather extreme groups. 

Consequently, we cannot conclude that these better 

domain-general as well as domain-specific 

abilities are unique to mathematicians. They 

may also hold true for individuals from other 

STEM fields (e.g., physics, chemistry, computer 

sciences). However, the results from Cipora et 

al. (2016) as well as from Dowker et al. (1996) 

suggested that mathematicians are unique in 

their abilities, even in comparison to individuals 

who use math in their everyday work. Still, 

future research should try to include a variety of 

control groups to provide an even more 

comprehensive picture of mathematical 

expertise. Second, our participants completed a 

large battery of tests to provide a systematic 

investigation of the psychological profiles 

related to mathematical expertise. We cannot 

exclude the possibility that the different tasks 

had confounding influences on each other. In 

addition, our participants overall completed nine 
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cognitive tasks which could have induced 

fatigue. However, those circumstances applied 

to both groups; therefore, they should not be 

responsible for evidence of group differences or 

similarities. Third, a common problem in 

psychological research in general, and in 

expertise research in specific, is insufficient 

power. Insufficient power reduces to possibility 

to find a true effect as well as infatuates the 

possibility to find a false positive effect 

(Brysbaert, 2019). While no power calculations 

are available for Bayesian analyses yet, 

estimations are possible. According to Brysbaert 

(2019) two groups of 190 participants each are 

needed to identify between groups differences 

and two groups of 110 participants each to 

identify null effects. These numbers indicate 

that our study is underpowered, which can be 

the reason why we had a lot of inconclusive 

results. This may have been especially crucial 

when we compared mathematicians with higher 

and lower expertise. While a bigger sample size 

is definitely needed to increase power, we did 

our best to increase power by using a balanced 

design as well as using reliable measurements 

with multiple observations per participants. 

Fourth, the possibility to find a false positive 

effect is not only heightened by underpowered 

studies, but also when a large number of 

comparisons are done. While the large number 

of included variables and measurements is a 

strength of this study, it also is a limitation as it 

increases the chance to find a false positive 

effect. However, in contrast to traditional 

frequentist analyses, Bayesian analyses are 

better in finding more true positives and fewer 

false positives especially in small sample sizes 

(van Ravenzwaaij & Ioannidis, 2019). Kelter 

(2020) even proposes that the probability for 

false positives in Bayesian independent samples 

t-test is about half the sizes as in frequentist 

analyses.  

Despite these limitations, the present study 

provides the broadest view on mathematical 

expertise yet, including not only domain-general 

and domain-specific abilities but also 

personality traits. In contrast to most previous 

studies, we systematically controlled for the 

confounding influence of general intelligence. 

Overall, mathematicians had a similar ability 

profile as non-mathematicians with only 

moderate evidence for better abilities of 

mathematicians in recognizing and continuing 

mathematical patterns, in the mental 

representation of symbolic numbers and in the 

arithmetic fact knowledge. Regarding 

personality, mathematicians had a more positive 

attitude towards mathematics but were less open 

to experience than non-mathematicians. 

Furthermore, it was the first study in which 

similarities and differences between individuals 

with lower and higher mathematical expertise 

were examined. However, additional experience 

in mathematics seems to be not related to 

differences in the variables we investigated. In 

this vein, the present study significantly 

contributes to a deeper and more differentiated 

understanding of mathematical expertise.  
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Appendix 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

1 —                                        

2 .64*** —                                       

3 .74*** .20 —                                      

4 .74*** .40*** .20 —                                     

5 .32** -.02 .39** .21 —                                    

6 .48*** .32* .24 .47*** .33* —                                   

7 .32** .26 .18 .27 .15 .73*** —                                  

8 .36** .31* .18 .31* .30* .75*** .35** —                                 

9 .41*** .18 .19 .49*** .30* .80*** .35** .41*** —                                

10 .46*** .24 .47*** .22 .45*** .37 .20 .27 .37** —                               

11 .31* .22 .23 .22 .32* .30* .22 .17 .29* .71*** —                              

12 .32** .24 .36** .07 .32** .26 .18 .22 .20 .69*** .32** —                             

13 .25 .16 .26 .09 .16 .25 .01 .22 .32** .58*** .31* .23 —                            

14 .30* .17 .24 .22 .21 .19 .07 .13 .22 .55*** .24 .20 .15 —                           

15 .26 -.08 .42*** .09 .41*** .17 .14 .11 .14 .63*** .35** .36** .17 .17 —                          

16 .26 .21 .14 .22 .18 .12 -.06 .19 .14 .13 .15 .04 .01 .18 -.01 —                         

17 .17 .02 .18 .13 .03 .13 .17 -.04 .15 .13 .06 .14 .07 .07 .05 -.09 —                        

18 -.11 .04 -.11 -.11 -.12 -.01 .14 -.14 -.01 .06 .07 .17 .07 .01 -.17 -.09 .32 —                       

19 -.20 -.04 -.19 -.16 -.05 -.13 -.15 .03 -.17 -.13 -.08 -.11 -.10 -.10 -.02 .08 -.98 -.34** —                      

20 .08 -.07 .08 .11 .08 .02 -.09 .01 .11 -.10 .03 -.07 -.10 -.02 -.16 .02 .18 .09 -.22 —                     

21 -.24 -.06 -.23 -.17 -.07 -.30* -.14 -.33** -.22 -.19 -.05 -.20 -.29* -.06 -.01 -.14 -.19 .02 .16 .31* —                    

22 -.18 -.02 -.25 -.05 -.26 -.03 -.03 .03 -.05 -.27* -.19 -.22 -.05 -.07 -.34** .05 .05 .03 -.03 -.05 -.22 —                   

23 .40*** .03 .49*** .20 .31* .33** .20 .25 .30* .34** .22 .23 .21 .15 .26 .18 .34 .01 -.35** .22 -.31* -.24 —                  

24 -.42*** -.14 -.47*** -.20 -.1 -.25 -.13 -.22 -.22 -.31* -.12 -.25 -.33** -.19 -.08 -.22 -.14 -.02 .14 .12 .77 .03 -.43*** —                 

25 -.18 -.03 -.18 -.14 .07 .06 .07 .11 -.02 -.20 -.19 -.07 -.16 -.07 -.14 -.14 -.05 -.14 .05 .08 .06 .18 -.21 .17 —                

26 .13 -.09 .22 .06 .25 .11 .07 -.03 .18 .30* .14 .19 .19 .21 .24 .12 .42 .29* -.45 .25 .09 .01 .41*** -.12 -.03 —               

27 -.25 -.17 -.33** .01 -.32** -.14 -.09 -.17 -.06 -.36** -.20 -.42*** -.13 -.11 -.27 -.20 -.03 -.04 .01 .30* .33** .19 -.17 .46*** .05 -.17 —              

28 .08 -.12 .20 .02 .18 .11 .12 .10 .04 .20 .04 .16 .15 .11 .18 .20 .20 .04 -.19 .09 -.07 .12 .25 -.08 -.08 .44*** -.03 —             

29 -.24 -.19 -.33** .02 -.25 -.21 -.18 -.20 -.10 -.33** -.15 -.45*** -.13 -.05 -.24 -.05 -.01 .02 -.02 .18 .29* .17 -.15 .39** .03 -.15 .82 -.02 —            

30 -.18 .01 -.24 -.09 -.22 -.08 .09 -.13 -.14 -.26 -.11 -.13 -.11 -.27 -.22 .03 -.08 .03 .11 -.11 -.05 .02 -.09 .08 -.04 -.21 .09 -.20 .09 —           

31 .05 .11 -.01 .05 -.05 .01 -.02 .12 -.05 -.01 -.15 .12 -.01 -.02 .03 .03 -.16 -.18 .19 -.05 .10 -.20 -.11 .02 -.23 -.16 -.08 -.14 -.08 -.01 —          

32 .02 -.05 -.04 .13 -.03 .02 -.11 -.01 .13 -.01 -.02 -.11 .09 .03 .01 .06 -.02 -.15 -.01 .12 .14 -.10 .01 .01 .02 .03 .13 -.02 .30* -.01 .23 —         

33 -.06 -.08 -.11 .06 -.03 .11 -.01 .16 .09 -.12 -.17 -.06 .04 -.03 -.15 .05 -.09 .21 .11 .05 -.04 .05 -.09 -.01 -.15 -.01 .03 .23 .09 .01 .26 .05 —        

34 -.22 -.02 -.28* -.11 -.07 -.09 -.02 -.12 -.06 -.01 .10 -.01 -.04 .02 -.13 -.10 -.15 .11 .15 -.14 .01 .01 -.28* .15 .07 -.30* .11 -.13 .11 .17 -.31* -.17 -.12 —       

35 .08 .03 .05 .08 .26 .05 .15 -.07 .05 .09 .02 .12 -.06 .01 .20 .01 .19 -.04 -.19 .03 .07 -.07 .10 -.02 -.05 .38** -.12 .10 -.20 .26 .14 -.07 -.08 -.38** —      

36 -.28* .02 -.37** -.16 -.62*** -.16 -.12 -.15 -.10 -.29* -.10 -.15 -.14 -.19 -.37** -.09 -.23 .08 .24 -.02 .01 .19 -.44*** .11 .07 -.42*** .27* -.23 .24 .20 -.01 -.06 -.01 .45*** -.42*** —     

37 .09 -.12 .11 .13 .59*** .21 .12 .12 .22 .21 .11 .08 .01 .15 .33* .09 .05 -.03 -.07 .05 .19 -.23 .18 .13 -.04 .38** -.17 .16 -.06 -.04 -.06 .06 -.05 -.17 .46*** -.57*** —    

38 .20 -.14 .28* .17 .63*** .19 .11 .16 .17 .33** .21 .18 .14 .18 .37** .12 .03 -.07 -.05 -.07 -.04 -.13 .31* -.10 -.03 .29* -.25 .14 -.12 -.18 .04 .06 -.03 -.27 .36** -.70*** .59*** —   

39 .15 -.09 .18 .15 .69*** .29* .14 .26 .26 .32* .18 .14 .04 .26 .41*** .15 .01 -.12 -.03 .02 .11 -.25 .17 .09 -.04 .27 -.22 .17 -.14 -.14 .05 -.03 -.01 -.24 .43*** -.61*** .82*** .69*** —  

40 .22 -.02 .21 .21 .55*** .15 .07 .11 .15 .29* .13 .25 .03 .19 .32** .11 .06 -.11 -.09 .03 -.06 -.26 .38** -.16 .05 .40*** -.32** .25 -.24 -.16 .20 .11 .07 -.34** .42*** -.64*** .56*** .60*** .61*** — 

*BF10>3, **BF10>10, ***BF10>100 

N = 84; 1. General intelligence; 2. Verbal intelligence; 3. Numerical intelligence; 4. Figural intelligence; 5. Mathematical achievement; 6. mean WM; 7. numerical WM; 8. Verbal WM; 9. Figural WM; 10. Patterning sum; 11. Letter sum; 12. Number sum; 13. 

Rotation sum; 14. Shape sum; 15. Time sum; 16. VSL accuracy; 17. ANS accuracy; 18. ANS response time; 19. ANS w; 20. Cardinality accuracy; 21. Cardinality response time; 22. NDE; 23. Ordinality accuracy; 24. Ordinality response time; 25. RDE; 26. small 

multiplications accuracy; 27. small multiplications response time; 28. Large multiplications accuracy; 29. Large multiplications response time; 30. openness; 31. conscientiousness; 32. extraversion; 33. agreeableness; 34. neuroticism; 35. NFC; 36. Math anxiety; 

37. enjoyment; 38. confidence; 39. motivation; 40. Self-evaluated math competencies 

 


