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Abstract 

Although much is known about the instructional outcomes related to science simulations, less is known 

about the cognitive and metacognitive processes individuals employ during these simulations, and how 

this processing relates to important science learning outcomes, such as scientific explanations of 

phenomena. In this study, we sought to develop profiles of experts’ problem solving during a physical 

simulation task that was outside their scientific discipline. The simulation involved working with a box 

with an unknown internal mechanism that varied water output in relation to water input. Eleven experts 

in four scientific disciplines (i.e., psychology, biology, chemistry, and physics) from a large public 

university in the southeastern United States engaged in a novel simulation of a scientific phenomenon. 

They worked with the simulation for 30 minutes, thinking aloud while they did so, and, following the 

experience with the simulation, developed a scientific explanation for the phenomenon they observed. 

The think- alouds and explanations were coded to reveal both the processing profiles and the scientific 

explanations associated with those profiles. These data indicated that many aspects of the experts’ 

processing profiles were similar (e.g., their use of observation as a high-frequency strategy). However, 

important differences in processing were identified that appeared to influence the precision and 

openness of the resulting explanations. Suggestions for future research, such as comparing these profiles 

to non-experts, and suggestions for classroom practice, such as modeling multiple patterns of strategy 

use during science tasks are discussed. 
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Introduction 

Over the past thirty years, seminal reports on 

science education reform have increasingly 

focused on effective problem solving as critical 

for improved student learning in science (e.g., 

AAAS, 1989, 1993; National Research Council, 

1996). One outcome of this heightened attention 

to problem solving in science has been the shift 

away from having students learn strictly about 

science to having them learn how to do science 

to understand disciplinary content better 

(National Research Council, 2012). Further, this 

shift toward doing science has embraced novel 
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and cognitively challenging problem-solving 

activities that require students to engage in the 

evidence-based thinking and reasoning aligned 

with actual scientific practice (National 

Research Council, 2005). These procedural 

approximations provide a conceptual framework 

for students to make meaning of the factual 

components of science. One category of 

challenging problem-solving activities entails 

the use of science simulations. These science 

simulations are intended to capture a scientific 

procedure in a novel way so as to motivate 

students and provoke the perceptive, analytic, 

strategic, and evaluative processes that are the 

hallmark of a scientific mind (NGSS Lead 

States, 2013).  

At their most basic, science simulations are 

physical or computer renderings of phenomena 

that cannot be easily experienced directly, 

perhaps because of their magnitude, 

infrequency, inaccessibility, expense, or the 

dangers they pose (de Jong & Van Joolingen, 

1998; Quellmalz et al., 2012). Although less 

common than computer simulations, physical 

simulations, like that employed in this study, 

provide learners the chance to be immersed in a 

challenging physical or social problem (e.g., 

hospital simulations) and educators or 

educational researchers the opportunity for close 

examination of learners’ approaches to problem 

solving (Hollinshead & Yorke, 1981). This 

examination includes learners’ analyses of the 

problem or system and the cognitive and 

metacognitive processes they manifest in 

response to their analyses. In this way, what is 

revealed about problem solvers during the 

simulation can then be used to enhance student 

performance in the future, to modify the 

instructional environment, or to ascertain the 

particular effects of the experience on science 

learning and performance (Lee et al., 2006; 

Scalise et al., 2011).  

Despite the extensive literature on the 

instructional value of simulations (Scalise et al., 

2011), less is known about the cognitive and 

metacognitive processing exhibited during these 

important science experiences or how those 

processes are reflected in the quality of the 

scientific solutions produced (Dinsmore & 

Zoellner, 2018). There is certainly ample 

evidence that effective problem solving in 

science—as well as other domains— requires 

the orchestration of cognitive and metacognitive 

processes (e.g., analysis, regulation, and 

evaluation), particularly when the problem 

encountered is both novel and complex (Hofer, 

2004; Kitchner, 1983). Yet what constitutes 

novelty and complexity does not solely reside in 

the features of the problem but depends as well 

on the expertise of the problem solver (Paletz et 

al., 2013). For those who are new to a field (i.e., 

in acclimation), many domain-specific problems 

that appear novel and complex would be viewed 

as more commonplace and relatively simple by 

more competent learners and certainly by those 

regarded as experts (Weisberg, 2006). 

Moreover, domain experts have repeatedly been 

found to display a breadth and depth of 

cognitive and metacognitive knowledge and 

strategies that those in acclimation or even 

competence do not display (e.g., Dinsmore et 

al., 2015; Sternberg, 1998; Veenman & Elshout, 

1999).  

Despite these advances in knowledge, what 

remains less understood about scientific 

simulations is how experts utilize their cognitive 

and metacognitive knowledge and strategies 

when engaged in a simulation activity that is 

outside their realm of expertise (Schraagen, 

1993). Are these “intelligent novices”—to 

borrow Brown and Campione’s description 

(1990)—able to draw on their extensive 

conceptual and procedural knowledge to 

facilitate performance? Or do they, as Voss 

(1987) contended, lose their performance edge 

when they are called upon to solve novel, out-

of-domain problems? These are precisely the 

questions we explored in this investigation.  

 A more complete understanding of how 

experts in a variety of scientific fields engage in 

adaptive and flexible problem solving outside 

their disciplinary home can prove invaluable to 

educators and educational researchers. The 

insights gained could be used to construct 

problem-solving profiles that would not emerge 

under other circumstances and build theory 

related to how experts in scientific disciplines 

use these cognitive and metacognitive process 
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as current theoretical guidance in these areas is 

lacking. Likewise, these profiles could serve as 

the basis for larger intervention studies or as 

guides for instructional programs intended to 

enhance the reasoning and problem solving of 

students in acclimation and competence after 

additional evidence is collected.  

 
The Theoretical Framework  

In order to construct meaningful profiles from 

experts’ efforts to solve a novel science problem 

delivered by means of a physical simulation, our 

overall design and approach to data analysis was 

informed by the Model of Domain Learning or 

MDL (Alexander, 1997, 2004). Within this 

framework, expertise development is seen to 

unfold in three stages—acclimation, 

competence, and proficiency or expertise—each 

characterized by particular interrelations among 

subject-matter knowledge (domain and topic), 

strategic processing (surface-level and deep-

processing), and domain interest (individual and 

situational). In this study, the profiling of 

experts’ approaches to solving a novel 

simulation task centered primarily on their 

display of surface-level and deep-processing 

cognitive and metacognitive strategies. 

According to Dinsmore & Alexander (2016), 

surface-level strategies can be defined as “those 

that pertain to initially encoding the problem at 

hand,” whereas deep-processing strategies 

“entail probing or transforming a given 

problem” (p. 214).  

Within the MDL, problem solvers’ reliance 

on surface and deep strategies is dependent on 

their stage of development. Those in 

acclimation, for example, have limited subject-

matter knowledge and the interests they show 

are rather fleeting and tied to features of the task 

or context. Consequently, in their efforts to 

work through a science simulation activity, we 

would expect these novices to rely heavily on 

surface-level strategies as they struggle to make 

sense of the task and attempt rather inelegantly 

to reach some solution. Learners who are 

competent within a domain, in contrast, would 

come to the simulation task with greater 

understanding of the scientific phenomenon 

being represented than those new to the domain. 

Therefore, their problem-solving efforts would 

be aided by their ability not only to analyze the 

surface features of the simulation task, which 

they still do, but also to analyze the problem 

more deeply and engage in self-monitoring and 

self-evaluation of their performance.  

By comparison, if those in the proficiency 

stage of the MDL were to undertake a science 

simulation activity in their field of expertise, we 

would expect these experts to move quickly 

toward solution. The reason for this expectation 

is that experts would come to the task with a 

well-honed mental model of the problem to 

guide their thinking and a depth of knowledge 

about the phenomenon being modeled. This 

problem-solving and content knowledge would 

then allow these experts to engage almost 

exclusively in deep analysis of how the 

simulation is capturing some underlying, albeit 

abstracted, scientific phenomenon. These 

experts would also be more perceptive and more 

practiced in data gathering and interpretation, 

more aware of how their work was progressing, 

more likely to reach a solution efficiently and 

effectively, and more capable of evaluating the 

viability of their proposed solution. They may 

even choose to consider alternative solutions as 

a way to test solution viability. 

While the MDL is the central framework of 

this investigation, we do want to point out the 

MDL is congruent with other influential 

frameworks of expertise (Dinsmore & Dumas, 

in press). For instance, the framework by 

Feltovich and colleagues (e.g., Feltovich et al., 

2006) posited that expertise is a long-term 

process gained through experience and practice. 

Thus, while we examine here what current 

practice looks like in this novel task, we should 

bear in mind that similarities and differences in 

problem solving as experts is part and parcel of 

their experiences through a wide variety of 

scientific practices— both inside and outside 

individuals’ respective disciplines (e.g., biology 

versus psychology). The MDL can be further 

illustrative here, as we return to in the future 

directions section—along with frameworks such 

Feltovich and colleagues’—to point to further 

longitudinal investigations of the questions 

under study here.   
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So, what would be expected when experts in a 

scientific domain are asked to tackle a 

simulation problem that is outside their realm of 

expertise? Would these experts look more like 

competent learners, using both surface-level and 

deep-processing strategies, or would they be 

able to bootstrap their existing knowledge and 

problem-solving abilities to work effectively 

and efficiently at this novel task? These are the 

intriguing questions that framed the current 

investigation. 

 
The Current Study  

In order to investigate experts’ cognitive and 

metacognitive processing when working outside 

their specific area of expertise, we invited 

scientists from different fields (i.e., biology, 

chemistry, physics, and psychology) to 

participate in an in-vitro (i.e., laboratory) 

problem solving study (Dunbar & Blanchette, 

2001; Klahr & Simon, 1999). Although the 

simulated problem used in this research 

represented a scientific phenomenon, it was one 

that was not central to these experts’ fields, and 

it was represented in a novel way. This decision 

to conduct a laboratory study was made to allow 

us to observe these experts closely and to gather 

think-aloud data during task performance.  

The novel task expressly chosen for this study 

has been referred to as a “Black Box” 

simulation (Cartier et al., 2005) that poses a 

rather ill-structured problem in a manner meant 

to provoke scientific thinking and reasoning. 

The task is considered ill-structured because 

there is not a singular correct solution to the 

problem being represented and no one strategic 

path to solution (Simon, 1973). To make their 

internal processes available for scrutiny, the 

experts were asked to think aloud during task 

performance, and their verbalization was 

recorded and transcribed. In addition to those 

think-aloud data, we measured their science 

knowledge and science interest before the task 

and evaluated the quality of the explanations of 

the scientific phenomena they generated to fit 

the data they recorded during the simulation. 

We used these data to address the following 

questions:  

1. What problem-solving profiles, based on 

the frequency and form of strategy use, 

emerge for experts solving a novel 

simulation task that is outside their area 

of expertise?  

2. To what extent are the resulting profiles 

related to the quality of the explanations 

experts generated as explanations for the 

simulation data they recorded and the 

underlying scientific phenemona? 

 

Method 

Participants 

Eleven university faculty members regarded as 

experts in several physical, natural, and social 

science domains were recruited from a mid-

sized public university in the southeastern 

United States. All participants had received 

doctoral degrees in their respective 

disciplines—Biology (n = 3), Chemistry (n = 3), 

Physics (n = 1), and Psychology (n = 3)—and 

they ranged in age from 36 to 56 years of age 

(M = 44.09, SD = 6.59). This sample was 

relatively gender balanced (55% male; 45% 

female), although predominantly Caucasian 

(82%). This gender and racial breakdown was 

reflective of the faculty demographics in these 

disciplines for this particular university. 

These experts were chosen to represent 

disciplines which would have expertise in 

explaining scientific phenomena (e.g., 

interpreting data, building hypotheses). While 

the physical system in the Black Box— 

described below— may be more familiar to 

those in the physical sciences than the social and 

life sciences, this task was assumed to be novel 

as none of these participants’ research areas 

incorporated the movement of water through a 

system. This expertise would be more typical of 

faculty in the College of Engineering at this 

university. They were not included as this would 

likely not be a novel task for them.  

 
Apparatus and Research Task 

The problem-solving task selected for this study 

consisted of manipulating an unfamiliar 

simulator of a physical phenomenon. 

Specifically, the simulation consisted of a Black 

Box activity co-developed by researchers at the 

University of Wisconsin-Madison and teachers 
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at Monona Grove High School in Wisconsin 

(Cartier et al., 2005). The Black Box (Figure 1) 

consists of a funnel at the top of a box and an 

output tube at the bottom of the box, both of 

which are visible. Covered by the outer shell of 

the Black Box, and therefore not visible to the 

problem solver, are mechanical components that 

regulate how the water moves through the box. 

Importantly, there are water repositories and 

mechanisms within the box that do not allow the 

water input and output to occur in a 1:1 ratio. 

These mechanisms are arranged in a vertical 

series from top to bottom in the box with tubes 

for water flow connecting these mechanisms. 

For example, when 100mL are poured into the 

funnel, 200mL may come out of the tube. On 

another trial that same 100mL input may result 

in no water coming out of the tube. To allow 

participants to experiment with input-output 

ratios, graduated cylinders for measuring water 

input and output were provided. Specifically, 

these vessels consisted of the following: two 

1000mL beakers graduated every 50mL, a 

1000mL cylinder graduated every 20mL, a 

500mL cylinder graduated every 10mL, and a 

50mL cylinder graduated every 1mL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Black Box apparatus 
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A Priori Measures  

In this study, participants’ science knowledge 

and interest were measured a priori. 

 

Knowledge About Scientific Model Building 

For this investigation, we used a measure of 

knowledge about developing scientific 

explanations and model building (e.g., 

generating hypotheses, interpreting data) as 

confirming evidence for our designation of 

participants as experts in various science 

domains. This measure was developed from 

previous descriptions of scientific model 

building and explanations of scientific 

phenemona (Lederman et al., 2002), a document 

that captures the scientific processes closely 

aligned with the simulation task described 

below.  

These items were constructed and scored 

using a graduated response model (Alexander et 

al., 1998). The graduated response model 

consisted of four levels: an in-domain correct 

response (4 points), an in-domain incorrect 

response (2 points), and out-of-domain incorrect 

response (1 point), and a “folk” answer in which 

someone without domain expertise could be 

easily fooled (0 points). A sample item from this 

measure was as follows: 

Natural phenomena can be understood 

through the following: 

a. observable stimuli 

b. two-page research articles 

c. common language 

d. data patterns 

For this sample item, d was the correct in-

domain (scientific reasoning and explanation) 

option, and a the incorrect in-domain (scientific 

reasoning and explanation) option. Option b 

represented the out-of-domain (i.e., not 

scientific reasoning and explanation) distractor, 

while c was the pedestrian or everyday 

distractor. Thus, total scores on the prior 

knowledge test could range from 0 to 44. 

However, rather than report total scores, we 

calculated the average score per item for each 

participant. This average is more interpretable 

as it gives us a value which represents their 

typical response, whether the average is closer 

to 4, which would represent someone typically 

choosing the correct in-domain responses, or an 

average score closer to 1, which would indicate 

someone typically choosing the incorrect out-of-

domain response. These averages could range 

from 0 (i.e., choosing all everyday distractors) 

to 4 (choosing all correct in-domain responses).  

As per our expectations, the performance of 

the 11 experts participating in this study was 

consistently high, approaching ceiling effect. 

Specifically, the average score for participants 

on these items was 3.27 (SD = .22). 

Additionally, scores for each of the disciplines 

were relatively consistent for biology (M = 

3.25), chemistry (M = 3.12), physics (M = 3.45), 

and psychology (M = 3.39). The reliability of 

the science knowledge measure could not be 

ascertained by conventional means, due to the 

small and select sample. However, given that all 

item difficulties were near ceiling, it would 

appear to support the contention that these were 

experts in science.  

 

Science Interest 

As in prior investigations involving competent 

or more expert participants (Alexander et al., 

2004; Fountain, 2017; Jetton, 2018), we chose 

to use a measure of enacted versus professed 

interest. By enacted interest, we are referring to 

participants’ reports of their involvement in 

domain-related activities over a given 

timeframe. This approach to interest assessment 

stands in contrast to mere expressions of 

potential interest common in the literature. The 

rationale for such a procedure is that individuals 

personally invested in a specific field of study 

will naturally be engaged in activities aligned 

with that field. 

For this study, participants’ personal interest 

in science was measured by means of a 10-item 

measure documenting their engagement in 

scientific activities (e.g., “writing about 

scientific topics for scholarly journals”). 

Participants responded to these items on a 100-

point visual analog scale from “never” to “very 

frequently.” We averaged across the 10 items 

for a maximum science interest score of 100. 

The reliability of this interest measure was 
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found to be good for experimental purposes (α = 

.81).  

Again, in keeping with the designation of 

participants as experts in science domains, the 

mean for this measure was relatively high (M = 

68.34; SD = 14.22), with scores ranging from 

46.40 to 89.50. Interestingly, differences in 

reported interest were found for the four science 

domains represented in this study: Biology (M = 

62.43), Chemistry (M = 75.66), Physics (M = 

67.27), and Psychology (M = 67.27). However, 

the small and select sample precluded any 

statistical analysis of those differences.  

 
Think-Aloud Protocols 

As a means of gathering evidence of their 

cognitive and metacognitive processing, 

participants engaged in think-alouds during task 

performance that were audio and video 

recorded. Specifically, the experts were directed 

as follows: 

First, we have supplied pencil 

and paper for you to take any 

notes as you work on the 

simulator. Second, while you’re 

engaged in the simulator, we 

would like you to say out loud 

anything you are thinking or 

doing as you engage in the 

simulation and develop your 

model. There are no right or 

wrong things to say here, just say 

whatever is going through your 

head as you work. If you are 

quiet for a period of time, I’ll ask 

you to say what you’re thinking. 

Do you have any questions? 

The audio files were then transcribed by the 

third author. A subsample of the transcriptions 

was coded by the first author using an existing 

coding scheme of cognitive and metacognitive 

processes used during simulations (Dinsmore & 

Zoellner, 2018) with acceptable interrater 

reliability similar to previous studies (k = .48).  

Since the simulation in the previous study 

was web-based and this study was the 

manipulation of a physical simulation, several 

modifications to the existing scheme were 

made. For one, the physical simulation had a 

temporal aspect to it, in that the water that was 

part of the procedure took time to enter and then 

leave the Black Box. Therefore, an Observing 

code was added to capture participants’ 

attention to the time element. For another, the 

code for Using a Text Feature was dropped 

since the physical simulation did not contain 

any text-based information.  

Descriptions of the cognitive and 

metacognitive codes, along with examples, are 

included in Table 1 (cognitive) and Table 2 

(metacognitive). The cognitive processing 

variables are broken down further into those that 

are surface level versus those that are deep level. 

For example, observing (i.e., restating the 

conditions or findings about a particular trial) is 

a surface-level process since it pertains to 

encoding aspects of the problem. 

Interpretation/elaboration (i.e., deciphering or 

expanding on the results of a trial or trials) is a 

deep-level process since it pertains to 

transforming the problem using the participant’s 

own prior knowledge or experiences to do so.  

The metacognitive processes are broken 

down into three codes (metacognitive 

knowledge, metacognitive experiences, and 

goals) in line with Flavell’s (1979) 

metacognition framework. These processes 

monitor and control the cognitive processes 

described previously. For instance, 

metacognitive experiences (i.e., cognitive or 

affective experience that pertains to a mental 

operation) are monitoring processes used to 

determine whether or not the participant’s 

current cognitive processes are sufficient to 

solve the problem.
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Table 2. Coding for Metacognitive Strategies 

Code Code Description Example(s) 

Metacognitive 

Knowledge 

(MK) 

Knowledge or beliefs that 

affect the course of mental 

operations about a person, 

task, or strategy. 

I don’t know anything about this. 

Metacognitive 

Experiences 

(ME) 

Cognitive or affective 

experience that pertains to a 

mental operation. 

I’m currently trying to better understand what is going on in there. 

Goals (G) Setting a cognitive goal. I want to figure out what is happening inside this box. 

  

Table 1. Coding for Cognitive Strategies 

Code Code Description Example 

Surface Level Processes 
  

Control of Variables (CV) 

 

 

Changing an input variable to see 

what happens to an output variable 

I’m pouring in 50mL and seeing what comes out. 

 

Rerunning/repeating (RR) Running an identical trial in the 

simulation again 

Okay, well let’s try that same thing again. 

Observing (OB) Restating the conditions or 

findings about a particular trial 

Still nothing coming out of the box. 

Deep Level Processes 
  

Cued History (CH) Attempting to change output 

variable(s) to some degree by 

manipulating input variables 

Okay, so my hypothesis is that there is a reservoir 

in there, so if I inundate it with water, I should be 

able to overflow the reservoir. 

Predicting (P) Guessing the result of a particular 

trial 

200mL should come out this time. 

Questioning (Q) Asking a question I wonder if there is deception involved with this 

simulation? 

Arguing (A) Arguing with a particular 

parameter or result 

That shouldn’t happen that way. 

Global Restatement (RG) Summarizing the results of 

multiple trials 

I put 600 in and got 450 out, then I put 200 in and 

got 300 out. So that’s 800 in and 750 out total. 

Interpreting or Elaborating 

(IE) 

Deciphering or expanding on the 

results of a trial or trials 

The results of these trials seem odd so there is 

always a chance that the tube and the funnel are 

not connected. 
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Scientific Explanations of the Simulated 
Phenomena  

The principal outcome measure in this study 

was the explanations the experts constructed 

that would accounted for the data gathered 

during the Black Box simulation task. To 

externalize these experts’ mental models, they 

were supplied with paper and pencil and 

instructed as follows:  

Record your theoretical model 

that explains the data generated 

from the simulator using either 

drawings and/or prose. You may 

transfer any information from 

your notes from the simulation if 

you wish. 

While the experts were given whatever 

time they required to complete their final 

model, they all finished within 

approximately 5 minutes.  

The resulting explanations were 

coded along two dimensions, precision 

and openness. These dimensions were 

derived from the empirical, yet tentative 

components of Lederman et al.’s (2002) 

framework for the nature of science and 

Cartier et al.’s (2005) focus on observed 

data patterns helping form and evaluate a 

scientific explanation. Precision refers to 

the degree to which the explanation or 

prediction in the theoretical model either 

matched the mechanism inside the Black 

Box or would be a precise description 

based on the data they collected. For 

example, Participant 6 described their 

model with precision that drew on their 

data. In explaining their model, they 

stated the following: “There is capacity 

for approximately 600 milliliters of 

water to be added before it triggers the 

overflow mechanism.” This contrasts 

with a less precise model described by 

Participant 4: “Water goes in the top and 

sometimes comes out the bottom.” 

While correct in an overall sense, this 

participant did not connect the data they 

observed to their explanation in a 

specific way. 

Openness refers to the degree to 

which these experts presented one or 

multiple explanations to describe the 

phenomenon or evidence as to whether 

they thought multiple models were 

possible. The data generated from the 

task would allow for multiple 

representations of the scientific 

phenomena to be explained. Given the 

possibility for multiple explanations to 

fit the data they recorded, we evaluated 

their willingness to consider alternative 

explanations of the scientific 

phenomena. For example, Participant 6 

developed a precise model (as described 

previously) but was still open to the need 

for more detail: “I am still not sure if 

containers tip to overflow or how much 

water starts in the box.” Participant 8 

described their model with certainty 

through statements such as, “Any water 

above 800 milliliters triggers drainage of 

the whole system, including the holding 

tank.” There was little discussion of a 

need to run more trials or the uncertainty 

of their findings when describing their 

model.  

The first and second authors coded 

these explanations by creating scales for 

both precision and openness. Precision 

was coded on a number line continuum 

(using inches to represent the 

preciseness of each explanation) from 

imprecise to precise where total 

imprecision would represent an 

explanation of the phenomena that could 

not possibly accurately represent the 

data generated; total precision would 

represent the phenomena in the Black 

Box exactly. Openness was coded in the 

same manner, from closed to open, 

where totally closed would represent an 

explanation that considered only one 

possible explanation and no allowance 

for other interpretations while totally 

open would represent an explanation that 

provided multiple possible explanations 

and the allowance for additional 

interpretations.  
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Since these experts were expected to 

produce quality scientific explanations, 

scores on those explanations, with regard 

to precision as well as to openness, are 

relative to this expert sample with lower 

scores not meant to imply that they 

would be low relative to participants in 

acclimation or competence. 

 
Procedures 

Experts who participated in this study were 

recruited via email from the faculty of selected 

departments within the university. Those willing 

to participate were scheduled for a time to come 

to the lab where the apparatus was set up. After 

completing consent forms, the experts 

completed the demographics, science 

knowledge, and science interest measures 

online. They were then asked to engage with the 

simulator for up to 30 minutes and told that they 

could interact with the Black Box in any way 

they wanted as long as they did not reposition or 

open it. They were given scratch paper and a 

pencil with which to take notes. We gave the 

experts a five-minute and two-minute warning if 

needed. After the 30 minutes or when they 

signaled termination, the experts were asked to 

generate the explanatory scientific explanation 

for the physical occurrence they had observed in 

the simulation task.   

 
Analyses 

Because the purpose of this study was to 

describe expert processing patterns in a novel, 

simulated task, we relied on descriptive data 

(both quantitative and qualitative) to accomplish 

this goal. Specifically, we tracked the trend in 

both the quantity of processes used (i.e., how 

often they were used) as well as their 

conditional use (i.e., when they were used), 

since multiple aspects of strategy use have been 

shown to predict problem-solving outcomes 

more closely (Dinsmore, 2017). These data are 

represented in Gantt-type charts (all 11 

participants’ strategy profiles are presented in 

Appendix A). Frequency of use is indicated by 

the darkness of the bars for each process, with 

darker bars representing more frequent use of 

that process. The mean and standard deviations 

for each process are also indicated in these 

charts. Specifically, the mid-point of each line 

marks the mean, whereas the left and right 

endpoints represent one standard deviation 

below and above the mean, respectively. 

To examine when experts employed these 

processes during the simulation we calculated 

when that particular process occurred relative to 

all other processes employed. We did this by 

assigning a number to each process in the order 

it was used (i.e., the first process was assigned a 

“1”, the second process was assigned a “2”, and 

so on). Then for each process that number was 

divided by the total number of processes used. 

Thus, the first process used was a number 

slightly above 0 and the last process used was 1. 

The median process would be assigned a 

number around 0.5. For each process both the 

average and standard deviation of these values 

were calculated. In the Gantt charts, when 

strategies were employed is represented by the 

horizontal positioning of the bars corresponding 

to each process. The farther to the left the bar is 

positioned, the earlier the process was used. 

Conversely, the farther to the right the bar is 

positioned, the later the process was used.   

 

Results and Discussion 

Expertise Confirmation 

Our goal in this investigation was to examine 

the problem-solving profiles of experts manifest 

from cognitive and metacognitive processing 

data gathered as they verbalized their thinking 

and behaviors during the performance of a novel 

simulation tasks that fell outside their particular 

domains of expertise. Although the focus of this 

investigation is squarely on the strategic 

component of the MDL, we want to 

acknowledge participants’ performance on the 

other key dimensions of that model—subject-

matter knowledge and personal interest. In this 

investigation, the eleven participants displayed a 

near-ceiling level of science knowledge and 

strong evidence of involvement in science 

activities (Table 3). Both these outcomes serve 

as corroboration that these individuals are 

rightfully situated in the proficiency/expertise 

stage of the MDL.
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Table 3. Participants’ Knowledge and Interest Scores 

Participant # Mean Knowledge Score Mean Interest Score 

1 3.64 58.50 

2 3.45 89.50 

3 3.36 46.40 

4 3.18 61.67 

5 3.18 51.40 

6 3.00 - 

7 3.36 81.90 

8 2.91 84.30 

9 3.45 67.00 

10 3.09 69.89 

11 3.36 72.80 

 

 
Table 4. Frequencies of the Percentage of Cognitive and Metacognitive 

Processes Employed 

 Average (%) Standard Deviation (%) 

Control of Variables 4.38 4.11 

Repeating/Rerunning 9.52 3.78 

Observation 23.36 5.51 

Cued History 5.98 4.24 

Predicting 3.30 3.01 

Questioning 4.81 4.02 

Arguing 0 0 

Global Restatements 9.49 2.91 

Interpreting/Elaborating 22.06 6.12 

Metacognitive Knowledge 2.84 2.37 

Metacognitive Experience 8.01 2.93 

Goals 5.73 3.90 

Frequency of Scientific Strategy Use 

The time that these experts interacted with the 

simulator task was between 9 to 30 minutes. While 

only one participant completed the task in 9 

minutes, the ten other participants took between 27 

and 30 minutes to finish. During the period they 

were engaged with the simulation task, the total 

number of cognitive and metacognitive processes 

identified in the think-aloud data for the experts 

ranged from 33 to 125. Since the total processes 

these experts reported differed so significantly, we 

report differences in the frequency of processing by 

percentage and use standards deviations to 

represent when these processes were employed. 

This was done by dividing the frequency by which 

the participant employed a particular process 

divided by the total number of processes they 

employed. For instance, Participant 10 employed a 

total of 125 processes and employed the observing 

process 30 times, meaning that they employed the 

observing process 24% of the time. For the sample 

then an average percent of frequency of 

employment was calculated by averaging these 

percentages across the sample and the sample 

standard deviation by calculating the square root of 

the average deviation from the mean.  

Table 4 displays the percentages and standards 

deviations of the frequencies of each cognitive and 

metacognitive process described in Tables 1 and 2. 

These data are also presented graphically in 

Figure 2. 
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Figure 2. Typical employment of cognitive and metacognitive processes during the task. 
 

Overall, these experts employed the 

interpretative/elaborative and observation 

processes most often (22% and 23% 

respectively). In contrast, arguing and 

predicting were rarely employed (0% and 3% 

respectively). For the most part, deviations in 

how often these experts employed these 

processes was quite low ranging from 2.37% for 

metacognitive knowledge to 6.12% for 

interpretation/elaboration. This suggests that the 

experts across this sample were relatively 

homogenous in how frequently they employed 

these particular strategies. However, there were 

individuals who demonstrated some divergent 

processing patterns. For example, Participant 3 

employed no control of variables processes (i.e., 

changing an input variable to see what happens 

to an output variable), while Participant 4 

employed that particular process more often (13 

times or 12% their total processing).  

With regard to levels of processing, these 

experts relied on deep-level processing more 

often (45.65%) than surface-level processing 

(37.27%), and they engaged in metacognitive 

processes 16.58% of the time. This deep-to-

surface distribution is theoretically more aligned 

with high competence than expertise in the 

MDL, but it is likely attributable to the novel of 

simulation task and the fact that it was not 

specifically in these experts’ fields. Further, 

while difference in the relative frequency of 

deep to surface processes was small for 

participants (SD for levels of processing 

between 6.24 and 8.68), there were atypical 

patterns e recorded. For example, Participant 1 

employed surface-level processes more often 

than deep-level (52% versus 33% respectively). 

Additionally, some experts relied more heavily 

on metacognitive than cognitive processing, 

whereas Participant 5 metacognitive processes 

encompassed 24% of the total. 

 
Conditional Use of Science Strategies 

Conditional use (i.e., when the strategies were 

used) for the entire sample is represented in 

Figure 2 by the horizontal positioning of the 

bars. As these data suggest, the experts in this 

study typically employed one metacognitive 

process (i.e., goals) and two cognitive processes 

(i.e., control of variables and observation) earlier 

in the task. By comparison, metacognitive 

experiences and prediction were typically 
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employed later in the task. Again, referring to the 

sample as a whole, these processes were typically 

utilized across a large proportion of the task from 

beginning to end. One standard deviation of the use 

of these processes stretched across 47.57% of the 

task for metacognitive experiences (the shortest 

duration) to 61.52% of the task for control of 

variables (the longest duration). 

Given this rather broad use of processing across 

the tasks, we next examined whether this variance 

was the result of certain individuals using a 

particular process during one period of the task 

(e.g., earlier) and another participant using that 

same process during another period of the task 

(e.g., later), or were the participants more 

homogenous in their use of these processes 

throughout all periods of the task as the sample 

means and standards deviations would suggest. An 

examination of each individual’s use of strategy 

revealed that the group averages, with regard to 

conditionality, held across most of the participants 

with a few exceptions. For example, Participant 1 

was atypical because even though the participant 

did employ the control of variables process, the 

participant only did so for a very short duration. 

Participant 3 did not employ the control of 

variables process at all, instead this participant 

began employing the cued history process very 

early on in the simulation, which was atypical for 

these experts. The processing patterns of 

Participants 1 and 3 are represented in Figure 3.  

 
Relation of Profiles to the Scientific 
Explanations  

Our final research question concerned the 

relation between these experts’ processing 

profiles and the quality of their explanations. 

Data from our assessment of the experts’ 

explanations are graphically represented in Figure 

4, with precision on the vertical axis (with more 

precise explanations higher on the axis than less 

precise explanations) and openness on the 

horizontal axis (with more open explanations on 

the right and less open explanations on the left). As 

expected, all experts produced explanations that 

were at least reasonably precise, meaning their 

explanations had a relatively good fit to the data 

they generated from the stimulation. In other 

words, all of these models were plausible 

explanations of the phenomena in the Black Box; 

however, some were certainly more precise than 

others as depicted in the graph. Thus, the 

designations of higher or lower precision indicated 

in Figure 4 must be understood as rather fine-

grained distinctions among the explanations 

produced by experts. If those in acclimation were 

included, we would fully expect explanations from 

this group to include models that were more 

imprecise than these experts.  

There were, however, larger differences among 

these experts with regard to openness. 

Approximately half of the explanations were 

positioned on the left-hand side of the graph, 

indicating that only one possible explanation was 

generated from the data. The other half of these 

experts developed multiple explanations to fit the 

data they recorded. One discipline-specific 

difference that stands out is that the psychology 

experts, who developed less precise explanations 

on average, were more likely to hold open the 

notion that multiple explanations were certainly 

possible. 

To examine differences in the experts’ 

explanations in relation to the cognitive and 

metacognitive processes recorded in their think-

alouds, we first identified the experts who 

constructed the more theoretically viable 

explanation (more precise and more open) and 

those producing the less viable models (less precise 

and less open) as one would expect from higher 

quality scientific model building (Cartier, et al., 

2005; Lederman et al., 2002). We then compared 

those experts’ processing profiles to the indicators 

of explanation quality. The resulting comparisons 

profiles appear in Figure 5 with Participants 3 and 6 

representing the more viable explanations and 

Participants 4 and 8 representing the less viable 

explanations. The noticeable similarities in the four 

profiles displayed in Figure 5 are another reminder 

that these are comparisons among science experts 

and are likely more constrained than might be the 

case for samples of non-experts.  
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                      Figure 3. Processing profiles for Participants 1 and 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Plausibility and openness of the experts’ theoretical models by discipline. 

Note: CHEM = chemistry; BIO = biology; PHY = physics; PSY = psychology 
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Figure 5. Processing profiles for more successful experts (Participants 3 & 6) and less successful experts (Participants 4 & 8). 

 

Some differences, however, merit examination. 
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reliance on the interpreting/evaluating and 

observing processes. Participant 4, on the other 
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with the profile of Participant 8, who did rely on 

the interpretation/elaboration and observation 
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Participants 3 and 6, yet this expert generally 
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Participant 8, these differences in the processing 

profile may have been reflective of more limited 

science background. In fact, among this select 

group of experts, this individual received the 

lowest score on their science knowledge 

measure and their explanation. 

Conclusions and Implications 

Our goal in this investigation was to delve into 

the cognitive and metacognitive processing 

profiles of 11 science experts engaged in 

solving a complex, novel simulation task 

outside their discipline of scientific expertise. 

Because the group we observed in this study 

was very select, we had to find creative methods 

to gather, analyze, and report the profiles that 

emerged. We are also well aware of the limits 

on generalizability for this study because of the 

size and uniqueness of our sample. That being 

said, we were able to uncover patterns in these 

experts’ problem-solving performance that were 

both revealing and informative.  

Foremost, we found that with certain 

modifications and exceptions, these 11 science 

experts retained many of the attributes 
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indicative of expertise. For one, the overall 

frequency of surface-level strategies 

documented was more consistent with those in 

the higher levels of competence rather than in 

expertise. For another, there were explanations 

produced that, while certainly adequate, were 

not as precise or open as might be expected for 

experts. Yet, it must be remembered that our 

willing participants were asked to undertake a 

novel and complex simulation task that was not 

in their discipline of expertise. 

What we also determined from our analysis 

was how much more alike than different these 

11 science experts were, despite the diversity of 

their disciplinary roots. Yet there were still 

relevant distinctions that merited consideration. 

For instance, the frequency and conditional use 

of cognitive and metacognitive processes 

uncovered in the think-aloud data and 

graphically displayed in the results 

demonstrated dynamic processing, a finding 

consistent with the literature of strategic 

processing (Dinsmore, 2017; Bonner, 2013; 

Carr & Alexeev, 2011). Thus, consistent with 

the MDL, these experts were both adaptive and 

flexible in their use of cognitive and 

metacognitive processes. Indeed, we observed 

many patterns of processing that represented 

cyclical sequences of strategy use and 

adjustment when that cycle began to break 

down.  

Moreover, by means of fine-grained 

analysis, we could identify individual experts 

who were more or less successful at producing 

an explanation that was a good fit with the data 

they collected. There were also certain experts 

who were content with a single, adequate 

explanation, while others continued to probe for 

alternative and better models to explain the 

phenomenon the Black Box represented. Of 

course, there is no way to ascertain from this 

study whether such variability in strategy 

profiles or explanations was reflective of 

characteristics of the individual experts or of the 

disciplines from which they come. This is a 

question that warrants further exploration—and 

a topic to which we turn next.  

Implications for Research  

In pondering potential next steps in this program 

of research, we want to acknowledge certain 

methodological challenges that researchers 

should be prepared to confront. One especially 

daunting challenge relates to the time and labor 

demands involved in collecting, transcribing, 

and interpreting the think-aloud data, which 

served as our principal information source. It is 

understandable why researchers often rely on 

self-report measures in lieu of think- alouds, 

particularly when they wish to gather 

information from large numbers of participants 

or those less willing to expose their thinking 

than experts. However, self-reports of cognitive 

and metacognitive processing have long been 

viewed as questionable data sources (Dinsmore 

et al., 2008; Veenman et al., 2006; Winne & 

Perry, 2000). Thus, it seems that researchers 

must continue to explore methodological 

alternatives, unless they are willing to commit 

the time and energy required to tackle think-

alouds protocols. 

In addition to collecting more data on 

experts, there is also a need to compare these 

expert profiles to profiles of those in 

acclimation and competence. One particular 

strength of the MDL as a theoretical framework 

is the ability to use that lens to describe how 

these profiles are expected to change over the 

course of learners’ academic development. For 

example, would we find that those in 

acclimation exhibit a strong dependency on 

surface-level strategies, as the MDL predicts, 

while those in competence demonstrated more 

variable use of both surface and deep strategies 

during task performance? Further, what might 

we expect for the conditional use of these 

strategies for acclimating and competent 

learners?    

Finally, we return to a discussion of the 

developmental nature of the MDL as well as 

other framework of expertise (e.g., Feltovich et 

al., 2006). While the MDL encompasses the 

more formally schooled development of 

constructs such as knowledge, interest, and 

strategies, and other frameworks that delve 

deeply into the “rich instrumental experiences in 

the world and extensive practice,” (Feltovich et 
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al., 2006, p. 46) should also be explored. In 

other words, what experiences in the disciplines 

under study here (e.g., biology versus 

psychology) may result in better or worse 

problem-solving outcomes in experts in that 

field?  

Whatever methods and measures researchers 

elect to employ, and whether they choose to 

focus on experts in domains or those at other 

points in their academic development, it is our 

hope that the literature into the strategic profiles 

evidenced during problem solving will continue 

to expand. There is so much more to learn about 

the strategic patterns that learners exhibit when 

solving both novel and familiar problems, as 

well as problems that vary in complexity and 

structuredness. Similarly, there is still much 

more we do not understand about the variability 

or consistency of students’ strategic profiles as 

they move from one problem to another or from 

one academic domain to another.  

 
Implications for Educational Practice 

Because of the very exploratory nature of this 

investigation and the select group of participants 

involved, we are somewhat hesitant to forward 

implications for educational practice. 

Nonetheless, there are recommendations that we 

feel justified in proposing based not solely on 

the evidence in this study but made in 

conjunction with related research. Those 

recommendations pertain to the utility of 

physical simulations, like the Black Box 

activity, to provoke students’ scientific habits of 

mind and behavior. Specifically, because of 

their novelty and ill-structuredness, simulations 

like the Black Box can be motivational tools 

(Chang et al., 2010; Garris et al., 2002; Koh et 

al., 2010). They can also encourage students to 

observe and gather data, to speculate about 

unseen mechanisms more freely, to attempt 

building explanatory models that make sense of 

their observations and their data. Moreover, 

students in these contexts are free to engage in 

these valued activities without the expectation 

of knowing the “correct” answer offhand, or 

without undue stress of already possessing the 

“right” background knowledge.  

In other words, the Black Box is a task that 

has the potential to be an activity not only for 

documenting expert performance, but also for 

analyzing those in acclimation or competence. 

What can be learned about acclimating and 

competent learners’ problem solving and 

strategy use when engaged in the task and the 

scientific explanations that they generate as a 

result can serve as the basis for learning 

experiences that enhance or reinforce the 

performance patterns that are identified. In 

addition, while physical and computer 

simulations are most often used in STEM 

domains (Scalise et al., 2011), the ability to 

engage in effective problem solving when tasks 

are novel, complex, and ill-structured is prized 

in all academic domains (e.g., Shin et al., 2003; 

Simon, 1973). Thus, the more that can be 

garnered about students’ problem-solving 

approaches and strategic profiles, the more 

educators can devise meaningful and 

appropriate learning environments the allow 

students to progress in their academic 

development (e.g., NRC, 1996).  

In sum, we humbly offer this initial study as 

a sacrificial first step into building rich and 

diverse learner profiles that encompass not only 

patterns in strategy use but also incorporate 

information on learners’ knowledge, interests, 

and the quality of outcomes they ultimately 

produce. It is our hope that these initial 

conclusions pave the path toward better 

understanding, and ultimately, improved 

scientific practice in both formal and informal 

educational contexts. 
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Appendix A: Processing Profiles of All 11 Participants 
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