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Abstract 
In the study of play, it has been suggested that hunter-gatherer and egalitarian societies avoid 

competitive games and forms of dominance in society. The game of N!àì is played by the Ju|’hoan 

people in Botswana in a way that facilitates competition and contradicts this suggestion. While similar 

games have been described and studied extensively from qualitative perspectives, we aim to analyze 

patterns in the game of N!àì from a quantitative and statistical perspective. Specifically, using original 

data extracted from first-hand video recordings of twenty different matches, we adopt a class of Bradley-

Terry pairwise comparison models to analyze players’ latent game-playing abilities. In addition, we 

demonstrate the use of a Bayesian segmentation model to quantify streakiness. The assessment of the 

level of streakiness further enables the discussion of whether it is more advantageous to play in a streaky 

or in a random fashion. The findings question more general assumptions about hunter-gatherer societies 

and the activities in which they are likely to engage due to the egalitarian nature of their society. 

Implications for expertise research beyond gesture games are discussed. 
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Introduction  

The literature on expertise in games has been 

dominated by board games, in particular chess, 

mostly due to the presence of rating systems and 

regular tournaments (Gobet, de Voogt, & 

Retschitzki, 2004). Board games played in Asia 

and Africa have supplemented the research 

results; these games mostly consist of mancala 

games, such as bao (de Voogt 1995, 2002) and 

awèlé (Retschitzki 1990, N’Guessan, 1992). In 

this study, we introduce an African game, N!àì, 

which has no tournament or rating tradition. It 

is, however, part of an on-going discussion of 

whether hunter-gatherers play or develop  

 

strategic games. Specifically, we quantitatively  

evaluate dominance in the game from a 

statistical perspective. 

Games that are played in naturalistic 

settings, without tournaments and rating 

systems, are rarely used for research in expertise 

as they do not allow a convenient measure to 

distinguish experts from novices. Any attempt at 

doing so would require large numbers of 

matches between players to generate or 

approximate a ranking of players. For example, 

a tournament for the game of bao was organized 

in 1994 to allow for descriptive statistics of the 

game and it featured 92 matches for ten players 
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in the period of one month (de Voogt, 1995). In 

chess, one player needs to play at least 25 games 

before they can receive an official Elo-rating 

(https://new.uschess.org/frequently-asked-

questions-member-services-area), suggesting 

that even a month of documenting matches is 

not nearly enough for establishing a rating 

system (see also Aldous, 2017). 

The games of Morra and Rock-Paper-

Scissors stand out as games for which skill and 

expertise are documented even though they are 

not board games and do not have a rating 

system or recognized championships. Instead, 

they are mostly perceived as games that 

generate random outcomes. However, expert 

players have been identified in those games, not 

the least because of the constraint imposed by 

the speed of play: A match between two players 

takes only seconds. Documenting large numbers 

of interactions between opponents allows for the 

necessary data to analyze the actions of the 

players and determine the existence of dominant 

or statistically superior players. 

Like Morra and Rock-Paper-Scissors, the 

game of N!àì falls in the category of gesture 

games. In these games, two players gesture with 

a hand or a set of fingers at a precise moment in 

time, where the combination of each player’s 

signal determines the winner. These games have 

offered “a unique research paradigm to study 

sequential adversarial strategies in repeated 

interactions” (Zhang et al., 2021). It is 

hypothesized that the optimal strategy in these 

games is to play purely randomly; “however, 

humans are subject to the influence of many 

factors such as physical environment, emotional 

state, and degree of experience which ensure the 

game’s outcome is variable” (Serra, 2020, p. 

24). It is suggested “that Morra is hardly a game 

of luck. An expert player is able, in fact, to 

produce effective strategies which lead almost 

invariably to success against less skilled 

players” (Delogu et al., 2020, p. 2). In the case 

of Rock-Paper-Scissors, human strategies have 

been categorized from different perspectives 

(Dyson, 2019), and winning strategies have 

been researched in detail (Alfaro et al., 2009). 

Despite its similarities to the other gesture 

games, the game of N!àì has so far not been 

used for research on expertise, strategy, or 

randomized play. There are no championships, 

and the game has not been simulated with 

statistical models (de Voogt, 2017). The 

possible presence of experts would contradict 

the notion that, by definition, N!àì is a game of 

luck since the players of N!àì are said to live in 

an egalitarian society in which, according to 

some scholars (Roberts et al., 1959; Chick, 

1998), a strategic game with dominant players 

would be disruptive. The game is played 

frequently, often in teams as large as five, and 

suggestions have been made in the literature that 

some players are better than others, even though 

the players themselves maintain that no player 

dominates the game (de Voogt, 2017). (It is 

noted that the terms “dominant” and 

“dominance” are used here in their 

anthropological sense rather than the specific 

meaning they have in a game theoretical 

context; the phrases “dominant player” and 

“superior player” are used here 

interchangeably.)  

The presence of large teams, compared to 

Morra and Rock-Paper-Scissors, possibly 

complicates a player’s perception regarding 

individual dominance in the game but no 

statistical analysis of N!àì outcomes at the 

individual or team level has so far been 

attempted. To study the characteristics of the 

game as played in its current cultural context as 

opposed to an experimental or simulated 

environment, we collected videos of people 

playing this game in Botswana for a month-long 

period. The results of this study should inform 

to what extent N!àì can be considered a game of 

luck or expertise, and whether its non-random 

aspects could be salient to the participants in the 

game. 

Statistically, the basic structure of the game 

of N!àì can be regarded as pairwise comparisons 

between two individual players. Bradley-Terry 

style models (Bradley & Terry, 1952) have been 

widely used in similar setups to assess player or 

team superiority in sports (for example, chess, 

Elo, 1978; golf, Baker & McHale, 2016; soccer, 

Schauberger et al., 2018; and tennis, McHale & 

Morton, 2011). In this work, we use this model 

to compare the latent game-playing abilities of 
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each player and evaluate the hypothesis that 

N!àì, like Morra and Rock-Paper-Scissors, is not 

entirely a game of luck and that some players 

have demonstrated superiority in the game, 

especially against certain opponents. We also 

aim to identify non-random patterns by looking 

at winning and losing streaks. We adopt a 

Bayesian segmentation model that has been 

proposed to quantify streakiness (Yang, 2004). 

We demonstrate a few limitations of this 

method when applied to our data and augment it 

by adding another metric of significance based 

on empirical p-values calculated via Monte 

Carlo simulations. While streakiness has 

typically been discussed in sports in the context 

of winning or losing streaks, in our application, 

levels of streakiness can also be used to evaluate 

a player’s preferred strategy by detecting streaks 

of left- or right- hand plays. By investigating to 

what extent such a strategy affects the outcomes 

of the game, we assess the hypothesis that the 

optimal strategy is to play the game as randomly 

as possible.  

 

Rules of N!àì 

Rules of the game of N!àì have been detailed in 

a previous study (de Voogt, 2017). In summary, 

during each game play, two opposing players 

simultaneously play one hand on a particular 

beat in the accompanying music, and the winner 

is determined by whether the two players played 

the same or different hands. One player is on the 

team whose winning condition is “same hands” 

and wins if the two players played the same 

hands (i.e., both left or both right); the opponent 

player is then on the team whose winning 

condition is “different hands” and wins if the 

two players played different hands (i.e., one left 

and one right, or vice versa). The winning 

conditions are arbitrarily assigned beforehand 

by the two teams that participate in the game, 

and no player (or team) is specifically linked to 

one of the winning conditions. 

 
Participants, Recordings and Summary 
Statistics 

Video recordings of the game were collected 

over a one-month period in a setting with ten 

players, seven men and three women, who 

regularly demonstrated the game for guests of a 

safari lodge in Botswana. Data extracted from 

the videos include the specific individuals 

participating in the game, the position of players 

in their team line-up, the order of each play, the 

outcome of each play as well as the hand that 

each player used for the play. The recordings 

were made by one of the authors with 

permission of the players and the venue where 

the players were working, and the process 

followed procedures set out by the Institutional 

Review Board of the American Museum of 

Natural History in New York. In total, data for 

20 different game days were obtained, with each 

game day corresponding to one match between 

two different teams. A summary of the 20 

matches is shown in Table 1. For instance, 

during the first match, a total of 7 rounds were 

played with team 1 winning 3 rounds and team 

2 winning 4 rounds. To clarify our terminology, 

at the player level, a player wins a point if he or 

she wins against the opposing player. When the 

players on a team have reached a total of five 

points, this team wins a round and the team’s 

score increases by one. 

The players preferred certain team members 

over others due to a developing rivalry between 

two groups of five. As shown in Table 1, team 1 

refers to the team that consists mostly or 

exclusively of players A, B, C, D, or E, and 

team 2 refers to the team that mostly features 

players F, G, H, I, or J. Only when players were 

not available would a player switch sides to 

even the size of the two teams. If for a specific 

match a team has all of the regular five players 

or is missing only one of them, we consider it an 

“ideal team” (see Table 1). This variable is used 

in later sections to assess whether or not a 

player’s game-playing ability is affected by that 

person’s team members. 

The duration of each play varied from about 

4 seconds to over 8 seconds per interaction. For 

instance, two players, J and E, particularly 

enjoyed prolonging their encounters by 

foregoing the beat in the music repeatedly, 

feigning and using entire body movements 

rather than just their hands. 
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Table 1. Team level statistics for the 20 recorded match days. The score of the winning team is 

highlighted in bold. 

  Team 1  Team 2  

Match   Score       Players Ideal team Score Players Ideal team 

1 3 A B C D E Y 4 G H I J Y 

2 4 A B C D E Y 4 G H I J Y 

3 12 A B C D E Y 9 G H I J Y 

4 3 A B C D E Y 8 G H I J Y 

5 5 B C D E Y 2 F G H I J Y 

6 20 A B C D E Y 13 F G H I J Y 

7 8 A B C D E Y 7 F G H I J Y 

8 0 A B C D E Y 6 F G H I J Y 

9 3 A B C D E Y 5 F G H I J Y 

10 6 B C E N 4 F G H I Y 

11 6 A B C E Y 7 F G H I J Y 

12 9 A B C E Y 8 F G H I J Y 

13 13 A B C E Y 11 F G H J Y 

14 3 B H N 1 D E N 

15 2 B I N 1 D E N 

16 4 A C N 0 J N 

17 7 A C D E Y 4 F G H J Y 

18 7 A B C D E Y 10 F G H I J Y 

19 5 A B D N 2 F G H J Y 

20 7 B C E F N 4 G H I J Y 

 

Method 

Randomness itself cannot be directly observed; 

only departures from randomness, such as a 

particular order, can be quantified (Towse & 

Neil, 1998). We aim to explore the level of 

randomness in both the outcome and the 

strategy of each play in order to determine the 

salience of superior play in the game as well as 

to identify playing strategies. Specifically, in 

our approach, we first adopt a Bayesian 

segmentation model to analyze and quantify 

streakiness (a higher presence of wins or 

righthand plays in a row). We carry out a 

simulation study to demonstrate limitations of 

this approach and augment it with a Monte 

Carlo procedure and empirical p-values. We 

then evaluate player dominance with the classic 

Bradley-Terry model for paired comparisons. 

Variations of this model also allow the 

evaluation of factors that may affect a player’s 

latent game-playing ability. 

 

 
 
Models for Streakiness 

To identify streakiness in each player’s 

performance, we adopt a Bayesian segmentation 

model (Yang, 2004). In general, given data 𝐷 ≡
𝑦1, … , 𝑦𝑛, which are assumed to be independent 

binomial random variables with parameters 
(𝑚𝑖 , 𝑝𝑖), 𝑖 = 1, … , 𝑛, we can estimate whether or 

not there exists a cut point 𝑐 ∈ {1, … , (𝑛 − 1)}, 

such that the event probabilities 𝑝𝑖 = 𝑝1 for 𝑖 ≤
𝑐 and 𝑝𝑖 = 𝑝2 for 𝑖 > 𝑐. The null model 

𝑀0: 𝑝1 = 𝑝2 (i.e., no streak) is tested against the 

one-cut-point model 𝑀1: 𝑝1 ≠ 𝑝2 and the model 

selection criterion is based on the Bayes factor 

of model M1 against M0, denoted by B10. 

Detailed derivations of B10 can be found in the 

Appendix. 

 
Simulation Study and Empirical p-Values 

To decide between models M0 and M1, it has 

been suggested simply to consider if B10 > 1 

(Yang, 2004). We design a simulation study to 
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explore properties of this criterion, in terms of 

its false positive rate and power. To evaluate the 

false positive rate, we simulate a binary data 

sequence from a true underlying model M0 (no 

cut point) with event probability p0. We then 

calculate the value of B10 for the simulated data 

sequence; if B10 > 1, we would (falsely) select 

model M1. We repeat this process for a large 

number of times and calculate the proportion of 

data sequences that yield a B10 value greater 

than 1, which gives an empirical estimate of the 

false positive rate. We test a few different 

combinations of the sample sizes (𝑛 ∈
{10, 20, … , 100}) and event probabilities (𝑝0 ∈
{0.5, 0.55, 0.8}). Results are shown in panel (a) 

of Figure 1.  

 
 

 

Figure 1. (a) False positive rate (left panel), (b) power based on B10 (middle panel), and (c) power based on p-value by 

varying sample sizes and event probabilities. For the false positive rate, the event probability refers to the value of p0 under the 

no-streak model. For the power, the event probabilities refer to the values of (p1,p2) under the one-streak model. Sample size 

values are 10,20,...,100. 

We see that the false positive rate tends to 

decrease when the sample size increases, as 

expected. The false positive rate is also 

comparatively smaller when the event 

probability differs from 0.5 by a large margin, 

since, in that case, data favor model M0 with 

more certainty toward the constant event 

probability (i.e., the sample proportion has 

smaller variance). For our application, however, 

the event probabilities are typically estimated to 

be between 0.4 and 0.6, and the sample size 

ranges from 4 to 63, which would result in false 

positive rates roughly between 20% and 50%. 

To remedy the issue of high false positive 

rates when the selection criterion is only to 

consider if B10 > 1, we instead treat B10 as a test 

statistic and calculate empirical p-values based 

on Monte Carlo simulations. Specifically, 

suppose the observed data 𝐷𝑜𝑏𝑠 = 𝑦1, … , 𝑦𝑛 

yields a B10 value 𝐵10
(𝑜𝑏𝑠)

. For each simulation 

step k, we simulate n binary outcomes 𝐷(𝑘) =

𝑦1
(𝑘)

, … , 𝑦𝑛
(𝑘)

 with no cut point and with event 

probability being the sample proportion of 1’s in 

the observed data 𝐷𝑜𝑏𝑠; the corresponding B10 

value is denoted by 𝐵10
(𝑘)

. We repeat this process 

for a large number K times to obtain 

{𝐵10
(1)

, … , 𝐵10
(𝐾)

}. Intuitively, these values provide 

an estimate of the distribution of B10 under the 

null model M0. Let 𝑆 = ∑ 𝐼(𝐵10 
(𝑘)

𝑘 ≥ 𝐵10
(𝑜𝑏𝑠)

) be 

the number of simulated values that are greater 

than or equal to the observed value; the 

empirical p-value is then calculated as 
𝑆+1

𝐾+1
 

(North et al., 2002). Using the empirical p-

values, we can control the false positive rate to 

be 5%, for example, by performing the test at α 

= 0.05 level. 

Power of the aforementioned model 

selection criteria (based on the B10 value alone 

or based on the p-value at α = 0.05 level) can be 

evaluated by simulating binary data sequences 

from a true underlying model M1 (one-cut point) 

with event probabilities (𝑝1, 𝑝2) and cut point at 

30% of the sample size. Results are shown in 

panel (b) of Figure 1. We see that both criteria 

tend to have low power (< 50%) when the event 

probabilities before and after the cut point are 

moderately close (𝑝1 = 0.5, 𝑝2 = 0.6; or 𝑝1 =
0.5, 𝑝2 = 0.7), regardless of the sample size and 
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the selection criteria. The result seems reliable 

only when the event probability changes 

drastically (𝑝1 = 0.2, 𝑝2 = 0.7) and the sample 

size is at least 50. Intuitively, a large amount of 

binary data is needed to detect when the success 

probability changes by a small amount. The 

issue of low power is difficult to avoid with 

limited data and we acknowledge that the 

proposed procedures are unlikely to detect small 

changes in the event probability, even if a cut 

point does exist. 

 
Models for Pairwise Comparison 

To assess if one player is superior to another 

player, we adopt the classic Bradley-Terry 

model for paired comparisons (a comprehensive 

review can be found in Cattelan, 2012). The 

basic form (referred to as an unstructured 

model) is given by 

𝑌𝑘𝑖𝑗  ~ (𝑖𝑛𝑑𝑒𝑝) 𝐵𝑒𝑟𝑛(𝑝𝑘𝑖𝑗), 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑘𝑖𝑗) = 𝜇𝑖 − 𝜇𝑗 , 

where 𝑌𝑘𝑖𝑗 ∈ {0,1} is the outcome of the kth 

game between player I and player j (1 if player i 

wins against player j, 0 otherwise), and 𝜇𝑖 and 

𝜇𝑗  are worth parameters that represent the game 

playing abilities of player i and j. This model 

can be modified to include p explanatory 

variables 𝑥1, … , 𝑥𝑝, as well as a zero-mean 

random effect ξ. In this case (referred to as a 

structured model), the worth parameter for 

player i is expressed in the linear form 

𝜇𝑖 = 𝑥𝑖1𝛽1 + ⋯ + 𝑥𝑖𝑝𝛽𝑝 + 𝜉𝑖. 

Models with only fixed effects assume that the 

game plays are independent from each other, 

whereas the random effect model assumes that 

game plays involving the same player are 

correlated. In addition, we can add a game-

specific “advantage” term 𝑧𝑘𝑖𝑗, where 𝑧𝑘𝑖𝑗 =

1 if player i has the advantage in game k and 

𝑧𝑘𝑖𝑗 =  −1 if player j has the advantage (for 

instance, in sport applications, this term can 

represent a home court advantage). In this case, 

we have 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑘𝑖𝑗) = 𝜇𝑖 − 𝜇𝑗 + 𝛽 ⋅ 𝑧𝑘𝑖𝑗, 

where the parameter β represents the size of the 

advantage and the worth parameters represent 

the game-playing abilities in the absence of this 

advantage (Turner & Firth, 2012). 

Results 

Player-level summary statistics are provided in 

Table 2. Standard one-sample test for 

proportions (with p-values displayed in Table 2) 

show that Players B and C are significantly 

more likely to win than to lose (winning 

percentages are 57.2% and 55.5%, respectively), 

and Player I and J significantly prefer to play 

one hand over the other (right hand percentages 

are 57.7% and 43.8%, respectively). In addition, 

it is shown that player B played left and right 

hands in nearly equal measure, suggesting that 

this strategy may be the most effective. This 

“evenhandedness” appeared in individual 

matches as well as in all matches combined. In 

contrast, at the team level, no dominant 

performance could be determined. In total, 

disregarding matches 14, 15, and 16 due to a 

lack of preferred team members, team 1 won 10 

out of 17 matches (58.82%) with a total score of 

118, compared to a total score of 108 for team 2. 

However, a preliminary one-sample test for 

proportions shows that team 1’s better 

performance is not significant. 

We apply the Bayesian segmentation model 

to the player-match level outcomes and 

calculate the corresponding empirical p-values 

to further detect the existence of nonrandom 

patterns in terms of streakiness. We then apply 

different variations of the Bradley-Terry model 

to see if some players have significantly better 

game-playing abilities. We consider several 

covariates in the model, to answer questions 

such as whether a player’s playing ability is 

affected by his/her team members, and whether 

it is better to play randomly (i.e., switching 

between a left and a right hand with no pattern) 

or with some strategy in mind (i.e., playing a 

right hand in a streak). 

 
Evaluating Streakiness 

Since the 20 matches are played on different 

days and under different conditions (such as 

length of the match and team size), we only 

consider streakiness within each match. We 

assess two types of streakiness by looking at 

whether a player has a sequence of wins or 

losses, which is an indication of the salience of a 

player’s dominance, or a sequence of left- or 
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right-hand plays, which suggests possible 

nonrandom playing strategies. Data 𝐷𝑖𝑚  consist 

of binary outcomes for player i (𝑖 ∈
{𝐴, 𝐵, … , 𝐻}) in match m (𝑚 ∈ {1, … , 20}). We 

calculate the value of B10 for each set of data 

𝐷𝑖𝑚, as well as an empirical p-value based 

10,000 Monte Carlo simulations. Results show 

that 5 sets of data sequence display a significant 

streaky pattern in terms of game results, shown 

in panel (a) of Figure 2. For each of the streaky 

data sequences, we also show the estimated cut 

point (estimated using the posterior mean). For 

instance, we can see that player A played a total 

of 9 games in match #16, starting with a streak 

of 5 wins, and then lost 3 out of the 4 remaining 

games. On the other hand, we also detect 9 sets 

of data sequence that are significantly streaky in 

terms of which hand is played, shown in panel 

(b) of Figure 2. For instance, player A played a 

total of 52 games in match #6. Seemingly, there 

is a change in strategy around game 20 (the cut 

point is estimated to be 18.8): this player played 

left and right hands fairly evenly before the cut 

point but then had streaks of playing a left hand 

after the cut point.

 
Table 2. Winning percentage for each player and how often they played their right hand, with p-value for testing if 

the percentage is significantly different from 0.5 in parenthesis. Significant values are highlighted in bold. 
 

Player Number of plays % win (p-value) % right hand (p-value) 

B 442 0.572 (0.003) 0.495 (0.887) 

C 425 0.555 (0.026) 0.480 (0.438) 

I 326 0.503 (0.956) 0.577 (0.007) 

D 256 0.500 (1.000) 0.453 (0.151) 

J 363 0.499 (1.000) 0.438 (0.021) 

F 268 0.496 (0.951) 0.506 (0.951) 

G 422 0.472 (0.263) 0.543 (0.088) 

H 408 0.471 (0.255) 0.532 (0.216) 

A 300 0.457 (0.149) 0.445 (0.074) 

E 382 0.453 (0.073) 0.524 (0.384) 

 

 

 
 
Figure 2. Streaky data sequences in terms of (a) game result (top panel) and (b) left/right hand (bottom panel). For each data 

sequence, we show the player, the match number, and (in parenthesis) the B10 value and the empirical p-value. For the top 

panel, white (grey) squares correspond to wins (losses); for the bottom panel, white (grey) squares correspond to right-hand 

(left-hand) plays. The red line in each data sequence corresponds to the estimated cut point. 
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While we have detected patterns of 

streakiness that are considered unlikely due to 

random chance at the individual player-match 

level, we caution against drawing a conclusion 

that the game of N!àì, in general, is non-random 

in terms of streakiness, due to the issue of 

multiple comparison. In fact, the percentage of 

significant data sequences 𝐷𝑖𝑚  (3.1% for game 

results and 5.6% for left/right hand) are close to 

what one would expect to happen by random 

chance when the tests are performed at α = 0.05 

level. On the other hand, we note limitations of 

the procedure: It is unlikely that a player’s 

winning percentage or right-hand percentage 

changes dramatically even in the presence of a 

cut point, and the test based on B10 and its 

empirical p-value likely does not have enough 

power to detect an existing streak in this case, as 

discussed previously. This leads to high false 

negative rates, and the overall level of 

streakiness in the game is likely underestimated. 

 
Evaluating Player Superiority and Optimal 
Strategy 

To evaluate the hypothesis that some players are 

significantly better than others and are 

especially superior against certain opponents, 

we first fit the unstructured Bradley-Terry 

model. To avoid issues of identifiability, we 

choose player E (whose winning percentage is 

the lowest) as the baseline category. Estimates 

of the worth parameters for each player and 

their standard errors are given in Table 3. 

As expected, all of the estimates are 

positive, and the estimated game-playing 

abilities of players B and C are especially 

superior. Furthermore, we estimate the pairwise 

Tablecontrasts 𝜇𝑖 − 𝜇𝑗 between all pairs of 

players and generate 95% confidence intervals 

based on the (approximate) normal distribution. 

After an exponential transformation, we obtain 

confidence intervals for 
𝑝𝑖𝑗

1−𝑝𝑖𝑗
, the odds that 

player i wins against player j, which is shown in 

Figure 3. Based on these results, we see that 

players B and C are significantly better than 

players E, A, H, and G. When player B plays 

against player E, for instance, the odds of 

winning is estimated to be around 1.6, 

corresponding to an estimated probability of 

winning 𝑝𝐵𝐸̂ = 61.5%. 

We fit additional models that seek to further 

explore what factors contribute to a player’s 

game playing ability. These models are fitted 

using the R package bradleyterry2 (Turner & 

Firth, 2012). We first add a team advantage 

term, where a player is considered to have an 

advantage if they are in an “ideal team” (as 

summarized in Table 1). Results show that this 

perceived team advantage is not significant 

(coefficient estimate is -0.055 with a standard 

error of 0.138 and p-value of 0.689). The 

estimated worth parameters, given in Table 3, 

are similar to the model without the team 

advantage term. 

We also quantify how evenly and randomly a 

player tends to play left and right hands and use 

this information as covariates for the player’s 

worth parameter. Specifically, for each player, we 

look at the corresponding left/right hand B10 

values and calculate the average of these values as 

a “streak score.” Intuitively, players with a higher 

streak score tend to play in a streakier fashion. We 

also calculate a “hand preference score” 

as  |𝑝𝑟ℎ̂ − 0.5|, where 𝑝𝑟ℎ̂ is a player’s overall 

right-hand percentage (given in Table 2). This 

score gives a simple measure of how much a 

player favors a specific hand. We fit two separate 

fixed effect Bradley-Terry models using the streak 

score and the hand preference score as covariate. 

Note that we avoid putting these two variables in 

the same model because they are highly correlated 

(correlation = 0.715). This is expected because, 

for instance, a very high right-hand percentage is 

likely linked to streaks of righthand plays. 

Coefficient estimates are −0.352 (S.E. = 0.165, p-

value = 0.033) for the streak score and −2.52 (S.E. 

= 1.37, p-value = 0.065) for the hand preference 

score, respectively. This implies that the estimated 

worth parameters will be higher for players who 

have low streak scores and low hand preference 

scores. Overall, these results support the 

hypothesis that the optimal strategy is to play as 

randomly as possible. 
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Table 3. Estimates of the worth parameters for each player, as well as the standard errors of the estimates, based on (a) the 

unstructured model and (b) model with a team advantage term. Player E is used as the baseline when fitting both models. 
 

  (a) (b) 

Player Estimate S.E. Estimate S.E. 

B 0.465 0.139 0.463 0.139 

C 0.403 0.142 0.404 0.142 

I 0.261 0.144 0.266 0.145 

J 0.222 0.140 0.228 0.141 

F 0.207 0.154 0.209 0.154 

D 0.194 0.163 0.200 0.163 

G 0.127 0.132 0.139 0.135 

H 0.116 0.135 0.125 0.138 

A 0.007 0.155 0.011 0.156 

E 0 0 0 0 

 

 

 

 
Figure 3. 95% confidence intervals for the odds of winning between pairs of players. For instance, the top line corresponds to 

the interval estimate of the odd of player B winning against player E, given by exp(µB − µE). 
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Discussion 

The results of the analysis of N!àì only partly 

support the expectations based on previous 

analyses of Morra and Rock-Paper-Scissors. 

While our hypothesis that some players may 

dominate the game is confirmed, only two 

players showed consistent superiority while the 

remaining eight players displayed no significant 

differences between their performances in the 

game. In other words, there is no ranking of 

players based on significant differences apart 

from the two top players. Moreover, at the team 

level—an aspect not present in the same way in 

Morra and Rock-Paper-Scissors—dominance 

was not significant. 

Based on the pairwise comparison models, 

individual superiority is found between the top 

two players and four other players only (see 

Figure 3). Two of these lesser players, E and A, 

who are the worst two, appear to be of the same 

team as the two top players B and C. It means 

that the top two players got to play the bottom 

two players much less often and that at the team 

level dominance would only be visible against 

two opposing players and not against the other 

three. As a result, the composition of the teams 

has made the presence of superior players much 

less visible. This makes the teams especially 

competitive, but it does not suggest to individual 

players that any one of them dominates the 

game more than others. 

The presence of winning streaks, an element 

of the game that is arguably salient to individual 

players, is detected at the individual level. The 

overall frequency of streaks, however, does not 

appear to be significantly higher than expected 

in a random match. Those players who showed 

a high streakiness of the left or right hand were 

not more successful, suggesting that these 

streaks, if salient, were not likely a part of a 

winning strategy. We note that more data are 

needed to improve the power of the proposed 

procedure. 

The absence of dominance at the team level 

and the limitation on winning streaks obscure 

the salience of individual dominance in the 

game. Conversations with the players confirm 

that superiority is not noticeable although at the 

same time, they agree that in a particular match 

some player or one team may significantly 

outscore another. It has been repeatedly stated in 

the literature that the best strategy in these types 

of games is random play and that environmental 

factors preclude players from achieving such an 

optimal strategy. The superior players in our 

data set, compared to their fellow players, came 

particularly close to “evenhandedness” or the 

same frequency of using the left or right hand 

both during a match and across all games 

combined. The conviction that the game is one 

of luck may have inspired these two players to 

select their hand of play without any particular 

strategy or close to randomly, which ironically 

has made them dominate the game over time. 

Future research may explore other possible 

strategies employed by players in this data set as 

well as the role of competitive play in Ju|’hoan 

and other San societies, which do not seem to 

recognize superior players but still foster intense 

competition. The analytical methods we have 

employed for the game of N!àì, in particular the 

presence of streakiness, may also be applied to 

the games of Morra and Rock-Paper-Scissors. 

Streaks of using the same gesture or winning 

streaks in these games are open to the same 

method of analysis explained in this study. This 

would further our understanding of their playing 

strategies and broaden the comparison between 

these types of games. 

Beyond gesture games, the statistical 

methods we have used will be of interest in the 

analysis of data of experts in naturalistic 

settings. By definition, experts are rare and the 

data they produce suffer from a number of 

shortcomings – just like in the game of N!àì 

discussed in this article. Experts’ data can 

sometimes be approximated by collecting data 

from non-experts, typically undergraduate 

students. However, it is often preferable to use 

imperfect ecological, naturalistic data produced 

by few experts rather than statistically more 

suitable data produced by many non-experts. In 

these cases, the techniques used in this article 

can shed important light on expert behavior. 
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Appendix: Derivation of B10 

For independent binomial data 𝐷 ≡ 𝑦1, … , 𝑦𝑛 with parameters (𝑚𝑖, 𝑝𝑖), 𝑖 = 1, … , 𝑛, we want to estimate 

whether or not there exists a cut point 𝑐 ∈ {1, … , (𝑛 − 1)}, such that the event probabilities 𝑝𝑖 = 𝑝1 for 

𝑖 ≤ 𝑐 and 𝑝𝑖 = 𝑝2 for 𝑖 > 𝑐. To test the null model 𝑀0: 𝑝1 = 𝑝2 against the one-cut-point model 

𝑀1: 𝑝1 ≠ 𝑝2, we calculate the posterior ratio 
𝑃(𝑀1|𝐷)

𝑃(𝑀0|𝐷)
=

𝑃(𝐷|𝑀1)⋅𝑃(𝑀1)

𝑃(𝐷|𝑀0)⋅𝑃(𝑀0)
. Under the assumption that the two 

models have the same prior probability, the selection criterion simplifies to 
𝑃(𝐷|𝑀1)

𝑃(𝐷|𝑀0)
, the Bayes factor of 

model M1 against M0, denoted by B10. 

We next explain how to calculate P(D|M1) and P(D|M0) for our data (a more general derivation can 

be found in (Yang, 2004)). In our application, data consist of binary outcomes (i.e., win or lose, left or 

right hand). The likelihood under model 1 is given by 

 
and the likelihood under model 0 (assuming p1 = p2 = p0) is given by 

 
We assign independent uniform (0,1) priors for the parameters 𝑝0, 𝑝1, 𝑝2 and an independent discrete 

uniform prior for c (in general, beta priors can be used for 𝑝0, 𝑝1, 𝑝2). We then have 

 

The last step is calculated by matching the integrals to beta kernels. Similarly, for P(D|M0), we have 

. 

If model M1 is selected, we want to estimate the cut point c. The posterior distribution of c is given by 

, 

𝑐 = 1, … , 𝑛 − 1. We can use the posterior mean to estimate the cut point c, i.e., 

. 

It is possible that more than one cut points exist in the data. An iterative segmentation process can be 

used to detect multiple cut points (Yang, 2004). In our application, however, we consider only the one-

cut point model due to the relatively small sample sizes.  


